Translator Disclaimer
29 April 2016 Gamma-Tocotrienol Modulates Radiation-Induced MicroRNA Expression in Mouse Spleen
Author Affiliations +
Abstract

Ionizing radiation causes depletion of hematopoietic cells and enhances the risk of developing secondary hematopoietic malignancies. Vitamin E analog gamma-tocotrienol (GT3), which has anticancer properties, promotes postirradiation hematopoietic cell recovery by enhancing spleen colony-forming capacity, and provides protection against radiation-induced lethality in mice. However, the underlying molecular mechanism involved in GT3-mediated postirradiation survival is not clearly understood. Recent studies have shown that natural dietary products including vitamin E provide a benefit to biological systems by modulating microRNA (miR) expression. In this study, we show that GT3 differentially modulates the miR footprint in the spleen of irradiated mice compared to controls at early times (day 1), as well as later times (day 4 and 15) after total-body irradiation. We observed that miR expression was altered in a dose- and time-dependent manner in GT3-pretreated spleen tissues from total-body irradiated mice. GT3 appeared to affect the expression of a number of radiation-modulated miRs known to be involved in hematopoiesis and lymphogenesis. Moreover, GT3 pretreatment also suppressed the upregulation of radiation-induced p53, suggesting the function of GT3 in the prevention of radiation-induced damage to the spleen. In addition, we have shown that GT3 significantly reduced serum levels of Flt3L, a biomarker of radiation-induced bone marrow aplasia. Further in silico analyses of the effect of GT3 implied the association of p38 MAPK, ERK and insulin signaling pathways. Our study provides initial insight into the mechanism by which GT3 mediates protection of spleen after total-body irradiation.

Sanchita P. Ghosh, Rupak Pathak, Parameet Kumar, Shukla Biswas, Sharmistha Bhattacharyya, Vidya P. Kumar, Martin Hauer-Jensen, and Roopa Biswas "Gamma-Tocotrienol Modulates Radiation-Induced MicroRNA Expression in Mouse Spleen," Radiation Research 185(5), 485-495, (29 April 2016). https://doi.org/10.1667/RR14248.1
Received: 26 August 2015; Accepted: 1 February 2016; Published: 29 April 2016
JOURNAL ARTICLE
11 PAGES


SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top