Translator Disclaimer
21 November 2016 Radiation-Induced Chemical Reactions in Hydrogel of Hydroxypropyl Cellulose (HPC): A Pulse Radiolysis Study
Author Affiliations +

We performed studies on pulse radiolysis of highly transparent and shape-stable hydrogels of hydroxypropyl cellulose (HPC) that were prepared using a radiation-crosslinking technique. Several fundamental aspects of radiation-induced chemical reactions in the hydrogels were investigated. With radiation doses less than 1 kGy, degradation of the HPC matrix was not observed. The rate constants of the HPC composing the matrix, with two water decomposition radicals [hydroxyl radical (OH) and hydrated electron (i0033-7587-186-6-650-ilm01.gif)] in the gels, were determined to be 4.5 × 109 and 1.8 × 107 M−1 s−1, respectively. Direct ionization of HPC in the matrix slightly increased the initial yield of i0033-7587-186-6-650-ilm12.gif, but the additionally produced amount of i0033-7587-186-6-650-ilm23.gif disappeared immediately within 200 ps, indicating fast recombination of i0033-7587-186-6-650-ilm34.gif with hole radicals on HPC or on surrounding hydration water molecules. Reactions of i0033-7587-186-6-650-ilm45.gif with nitrous oxide (N2O) and nitromethane (CH3NO2) were also examined. Decay of i0033-7587-186-6-650-ilm56.gif due to scavenging by N2O and CH3NO2 were both slower in hydrogels than in aqueous solutions, showing slower diffusions of the reactants in the gel matrix. The degree of decrease in the decay rate was more effective for N2O than for CH3NO2, revealing lower solubility of N2O in gel than in water. It is known that in viscous solvents, such as ethylene glycol, CH3NO2 exhibits a transient effect, which is a fast reaction over the contact distance of reactants and occurs without diffusions of reactants. However, such an effect was not observed in the hydrogel used in the current study. In addition, the initial yield of i0033-7587-186-6-650-ilm67.gif, which is affected by the amount of the scavenged precursor of i0033-7587-186-6-650-ilm72.gif, in hydrogel containing N2O was slightly higher than that in water containing N2O, and the same tendency was found for CH3NO2.

©2016 by Radiation Research Society.
Shinichi Yamashita, Jun Ma, Jean-Louis Marignier, Akihiro Hiroki, Mitsumasa Taguchi, Mehran Mostafavi, and Yosuke Katsumura "Radiation-Induced Chemical Reactions in Hydrogel of Hydroxypropyl Cellulose (HPC): A Pulse Radiolysis Study," Radiation Research 186(6), 650-658, (21 November 2016).
Received: 6 June 2016; Accepted: 1 August 2016; Published: 21 November 2016

Get copyright permission
Back to Top