Documentation of the Chromosome Number for Zigadenus glaberrimus (Liliales: Melanthiaceae) and its Significance in the Taxonomy of Tribe Melanthieae

Authors: Wendy B. Zomlefer, Michael McKain, and Jeremy Rentsch
Source: Systematic Botany, 39(2) : 411-414
Published By: The American Society of Plant Taxonomists
URL: https://doi.org/10.1600/036364414X680951
Documention of the Chromosome Number for *Zigadenus glaberrimus* (Liliales: Melanthiaceae) and its Significance in the Taxonomy of Tribe Melanthieae

Wendy B. Zomlefer,1,4 Michael McKain,1,2 and Jeremy Rentsch1,3

1Department of Plant Biology, University of Georgia, 2502 Miller Plant Sciences, Athens, Georgia 30602-7271, U. S. A.
2Present address: Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121-4499 U. S. A.
3Present address: Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Avenue, Boulder, Colorado 80303-1058 U. S. A.
4Author for correspondence (wendyz@plantbio.uga.edu)

Abstract—The monotypic genus *Zigadenus* occupies a critical position in the evolution of Melanthiaceae as sister to the clade comprising the rest of the genera in the tribe. Meiotic (n = 27) and mitotic (2n = 54) chromosome counts for *Zigadenus glaberrimus* documented here do not support a long-standing tentative report of 2n = 52. The likely base chromosome number of the tribe and significance of chromosome numbers as generic synapomorphies are discussed in reference to these newly recorded counts for *Zigadenus glaberrimus*, a likely hexaploid.

Keywords—Chromosomal evolution, Cytology, Phylogeny, Polyploidy.

Tribe Melanthieae (Liliales: Melanthiaceae) comprises seven genera (ca. 68–98 species) of predominately woodland and/or alpine perennial herbs occurring mainly in the temperate to Arctic zones of the Northern Hemisphere: *Amianthium* A. Gray (one species), *Anticlea* Kunth (ca. 11 species), *Schoenocodon* A. Gray (25–27 species), *Stenanthium* (A. Gray) Kunth (five species), *Toxicoscordion* Rydb. (ca. eight species), *Veratrurn* L. s.l. (17–45 species), and *Zigadenus* Michx. s.s. (one species). These generic circumscriptions are supported by analyses of *trnL-F* (plastid) and ITS (nuclear ribosomal) DNA sequence data (Zomlefer et al. 2001, 2003, 2006a, b). A significant consequence of these molecular studies was the reassessment of the traditional *Zigadenus* s.l., a poorly defined assemblage with a complex taxonomic history involving several proposed segregate genera (summaries in Zomlefer 1997 and Zomlefer et al. 2006a). These taxa share a somewhat similar scapose habit, usually with a bulb and racemes of small white flowers typically measuring five to 20 mm in diameter. Contemporary treatments (e.g. Schwartz 2002) have generally accepted the monotypic segregate *Amianthium* with the remaining ca. 25 species maintained in *Zigadenus* s.l. Based on these molecular data, however, *Zigadenus* s.l. is polyphyletic and forms five strongly supported clades (Fig. 1), each correlating with certain geographical distribution, morphological characters, and chromosome number (Zomlefer et al. 2001).

The reinstatement of segregate genera *Amianthium*, *Anticlea* and *Toxicoscordion* and the redefinition of *Stenanthium* result in a monotypic *Zigadenus*, a circumscription advocated historically by several botanists (e.g. Rydberg 1903; Small 1903, 1933; Gates 1918). The type (and only) species, *Z. glaberrimus* Michx. (sandbog death camas), is restricted to savannas, flatwoods, and bogs along the coastal plains of the southeastern U. S. A., from southeastern Virginia through the Carolinas, southern Georgia, and panhandle Florida, west to coastal Alabama (Fig. 2A). In phenetic analyses of morphological characters (Ambrose 1975, 1980; Schwartz 1994), *Z. glaberrimus* is the most isolated species of those studied in the tribe. Walsh (1940) suggested that *Z. glaberrimus* represented the ancestral form in the complex, based on the horizontal “woody” rootstock, suffrutescent stem, and relatively large flowers (to 30 mm diam; Fig. 2B) in a loose paniculate inflorescence. Autapomorphies for this distinctive species (discussed in Zomlefer 1997; Zomlefer et al. 2006a) include a rhizome lacking a bulb, two ovate nectar glands per tepal (Fig. 2B), and several anatomical features (foliar stomata with two aperture lips, distinct root exodermis, bracteolate pedicels, and dense tannin-like inclusions; Ambrose 1975). In addition, a tentative chromosome count of 2n = 52, which is unique for Melanthiaceae, has been reported by Preece (1956) but not verified.

Chromosome number is a significant and likely an invariant apomorphy for genera of Melanthiaceae (Zomlefer et al. 2001, 2006a), and members of tribe Melanthieae have a range of chromosome counts (Fig. 1), indicating several possible chromosomal restructuring events in the evolution of the tribe. *Zigadenus* in particular occupies a divergent position in the phylogeny of Melanthieae as sister to the rest of the tribe. The purpose of our study is to document this potential autapomorphy for *Zigadenus s.s.*, particularly in reference to a current investigation of chromosomal evolution in the family Melanthiaceae.

Materials and Methods

Meiotic Chromosome Number—Pollen mother cells (PMCs; microcytes) were prepared according to the general protocols outlined by Jones and Luchsinger (1986). Young flower buds of *Zigadenus glaberrimus*, collected in Apalachicola National Forest (Liberty County, Florida) by the first author at 10:00 AM, were fixed immediately in the field with modified Carnoy’s solution comprising 4 parts chloroform: 3 parts absolute (ethyl) alcohol: 1 part glacial (anhydrous) acetic acid. Immature flower buds (ca. 5.0 mm long; Fig. 3C) enclosed anthers (ca. 1.8 mm long; Fig. 3D) with PMCs undergoing optimal stages of meiosis for chromosome counts (late prophase I [diakinesis] to metaphase I/early anaphase I). Anthers were dissected from the buds, placed on a slide with several drops of diluted (ca. 1%) aceticarmine stain, and gently macerated. After application of a cover slip, the slide was placed between blotters and subjected to pressure. Slides were mounted in euparal for future reference. Well-spread metaphase I chromosomes were traced by the first author under a Leica DMLB Research Microscope with a camera lucida attachment. The herbarium voucher specimen, Zomlefer 803, is deposited at GA, and a duplicate, at FLAS (Appendix 1).

Mitotic Chromosome Number—Several live plants of *Zigadenus glaberrimus* were collected by Andrew Scott Walker in Hoke County, North Carolina, and transplanted to pots maintained at the Department of Plant Biology Greenhouse Facility at the University of Georgia. Root tips were prepared for chromosome spreads according to the protocols...
of Kato et al. (2004). Actively growing root tips (1 cm long) were harvested at 9:00 AM, placed in a nitrous oxide chamber at 10 atm for 3 hrs, rinsed with ice cold TE (Tris-EDTA) buffer solution [10 mM Tris, 1 mM EDTA adjusted to pH 8.0 with HCl], followed by three washes with 100% ethanol and gentle maceration in 30 μL of 3 parts acetic acid: 1 part ethanol. Suspended cells (6–8 μL) were placed on slides, dried in a humid chamber, and examined with a compound microscope to identify the best chromosome spreads. Slides were fixed with VECTASHIELD mounting medium with DAPI (4′,6-diamidino-2-phenylindole dihydrochloride) fluorescent stain (Vector Laboratories, Burlingame, California) prior to application of a cover slip. Well spread metaphase chromosomes were photographed under a Zeiss Axio Imager M1 microscope using SlideBook 5.0 imaging software (Denver, Colorado). The herbarium voucher specimen, Walker s.n. [19 Aug, 2011], is deposited at GA (Appendix 1).

Results and Discussion

The meiotic and mitotic chromosome numbers of $n = 27$ (Fig. 3 E) and $2n = 54$ (Fig. 3F, G) for *Zigadenus glaberrimus* are documented with plants from populations in Liberty County, Florida, and Hoke County, North Carolina, respectively. This study challenges the earlier mitotic report of “52?” by Preece (1956, p. 17), who also noted the unusual chromosome number in comparison to other species in the tribe. The difference in counts may be due to difficulties with adequately spreading the mitotic chromosome preparation in this particular species. In our case, the haploid count corroborates the diploid number from a distant population.

Chromosome number is a useful taxonomic character for the superficially similar genera within tribe Melanthieae (Fig. 1), especially the synapomorphic 2n numbers 20 for *Stenanthis* (Zomlefer and Smith 2002) and 22 for *Toxicoscordion* (Zomlefer et al. 2003; McNeal and Zomlefer 2010). A probable base chromosome number of $x = 8$ has often been postulated for tribe Melanthieae (summary in Zomlefer et al. 2006a), and multiples of this number are prevalent in other genera of the tribe: (Fig. 1; Sen 1975; Lowry et al. 1987; Tamura 1995; Zomlefer 1997): *Amianthium* ($2n = 32$), *Anticlea* ($2n = 32$), *Schoenocaulon* ($2n = 16$), and *Veratrum* (including *Melanthium*; $2n = 16, 32, 64, 80, 96$). *Zigadenus*, another exception to an octomeric count, is of particular interest due to its significant position in the evolution of Melanthieae as the functional outgroup of the tribe, and the verified count allows formal reassessment of the base number for tribe Melanthieae.

Our chromosome number has been included in a recent reconstruction of ancestral chromosome numbers for major clades within Melanthieae (Pellicer et al. 2014). Bayesian and maximum likelihood analyses with ChromEvol v. 1.3 (Mayrose et al. 2010) support nine as the likely base (haploid) chromosome number for tribe Melanthieae, and eight for the sister-clade to *Zigadenus glaberrimus*, which includes the remaining genera in the tribe. These hypothesized basic numbers indicate the prevalence of polyploidy (*Amianthium, Anticlea, Veratrum, Zigadenus*) and/or aneuploid variation (*Stenanthis, Toxicoscordion*) within the tribe.

Acknowledgments. Andrew Scott Walker generously provided live plants of *Zigadenus glaberrimus* collected in the field. David E. Giannasi contributed his expertise with the laboratory work for the meiotic count, shared reagents, and also reviewed a draft of the manuscript. The first author is also grateful to W. Mark Whitten (FLAS) and Angus Gloshon, Jr., who assisted collecting *Z. glaberrimus* in Florida, and to Louise Kirn (District Ecologist, U.S. Forest Service) for processing the collecting permit for Apalachicola National Forest. Michael Boyd and Kevin Turner (Plant Biology Greenhouse Facility, University of Georgia) maintained plants collected in the field, and Lisa Kanizay photographed the mitotic chromosome preparations. The first author also thanks the following...
herbarium curators and collection managers for furnishing distribution data for *Z. glaberrimus*: Mac Alford (USMS), Dennis Bell (NLU), J. Richard Carter (VSC), Curtis Hansen (AUA), Brian Keener (UWAL), Lucile McCook (MISS), Kent D. Perkins (FLAS), Tiana F. Rehman (BRIT/SMU/VDB), Lowell Urbatsch (LSU), Lisa Wallace (MISSA), and Michael Woods (TROY). Research funds provided to the first author by the University of Georgia Department of Plant Biology financed the collecting trip to panhandle Florida.

Literature Cited

Appendix 1. Voucher information for the chromosome numbers of *Zigadenus* glaberrimus reported in this study.
