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ABSTRACT
Imperfect detection during animal surveys biases estimates of abundance and can lead to improper conclusions
regarding distribution and population trends. Farnsworth et al. (2005) developed a combined distance-sampling and
time-removal model for point-transect surveys that addresses both availability (the probability that an animal is
available for detection; e.g., that a bird sings) and perceptibility (the probability that an observer detects an animal,
given that it is available for detection). We developed a hierarchical extension of the combined model that provides an
integrated analysis framework for a collection of survey points at which both distance from the observer and time of
initial detection are recorded. Implemented in a Bayesian framework, this extension facilitates evaluating covariates on
abundance and detection probability, incorporating excess zero counts (i.e. zero-inflation), accounting for spatial
autocorrelation, and estimating population density. Species-specific characteristics, such as behavioral displays and
territorial dispersion, may lead to different patterns of availability and perceptibility, which may, in turn, influence the
performance of such hierarchical models. Therefore, we first test our proposed model using simulated data under
different scenarios of availability and perceptibility. We then illustrate its performance with empirical point-transect
data for a songbird that consistently produces loud, frequent, primarily auditory signals, the Golden-crowned Sparrow
(Zonotrichia atricapilla); and for 2 ptarmigan species (Lagopus spp.) that produce more intermittent, subtle, and
primarily visual cues. Data were collected by multiple observers along point transects across a broad landscape in
southwest Alaska, so we evaluated point-level covariates on perceptibility (observer and habitat), availability (date
within season and time of day), and abundance (habitat, elevation, and slope), and included a nested point-within-
transect and park-level effect. Our results suggest that this model can provide insight into the detection process
during avian surveys and reduce bias in estimates of relative abundance but is best applied to surveys of species with
greater availability (e.g., breeding songbirds).

Keywords: Alaska, Bayesian analysis, density, detection probability, distance sampling, Lagopus, point transect,
time removal, WinBUGS, Zonotrichia atricapilla

Modelo jerárquico combinando muestreo por distancia y eliminación de tiempo para estimar la
probabilidad de detección de aves durante conteos en puntos

RESUMEN
La detección imperfecta durante los muestreos de animales sesga las estimaciones de abundancia y puede llevar a
conclusiones inadecuadas sobre distribución y tendencias poblacionales. Farnsworth et al. (2005) desarrollaron un
modelo combinado de muestreo por distancia y eliminación de tiempo para muestreos de puntos y transectas que
contempla tanto la disponibilidad, la probabilidad de que un animal esté disponible para ser detectado (e.g., que un
ave cante), como la perceptibilidad, la probabilidad de que un observador detecte un animal dado que está disponible
para detección. Desarrollamos una extensión jerárquica del modelo combinado que brinda un marco de análisis
integral para un grupo de puntos de muestreo en el cual se registran tanto la distancia desde el observador como el
tiempo de la detección inicial. Con la implementación de un marco de trabajo bayesiano, esta extensión facilita la
evaluación de covariables sobre la abundancia y la probabilidad de detección, incorporando conteos con cero exceso
(i.e. inflación cero), considerando la autocorrelación espacial y estimando la densidad poblacional. Las caracterı́sticas
especı́ficas de las especies, como los despliegues comportamentales y la dispersión territorial, pueden llevar a
diferentes patrones de disponibilidad y perceptibilidad, lo cual puede a su vez influenciar el desempeño de estos
modelos jerárquicos. Por lo tanto, primero evaluamos nuestro modelo propuesto usando datos simulados bajo
diferentes escenarios de disponibilidad y perceptibilidad. Luego ilustramos su desempeño con datos empı́ricos de
puntos y transectas para un ave canora que produce consistentemente señales principalmente auditivas fuertes y
frecuentes (Zonotrichia atricapilla) y para dos especies de Lagopus sp., que producen señales principalmente visuales
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más intermitentes y sutiles. Los datos fueron colectados por múltiples observadores en puntos y transectas a lo largo
de un amplio paisaje en el sudoeste de Alaska, por lo que evaluamos covariables a nivel de punto sobre
perceptibilidad (observador, hábitat), disponibilidad (fecha dentro de la estación, tiempo del dı́a) y abundancia
(hábitat, elevación, pendiente), e incluimos un efecto anidado de punto dentro de la transecta y a nivel de parque.
Nuestros resultados sugieren que este modelo puede ayudar a entender el proceso de detección de las aves durante
los muestreos y reducir el sesgo en las estimaciones de abundancia relativa, pero se aplica mejor a los muestreos de
especies con mayor disponibilidad (e.g., aves canoras reproductivas).

Palabras clave: Alaska, análisis bayesianos, densidad, eliminación de tiempo, Lagopus, muestreo por distancia,
probabilidad de detección, transecta de puntos, WinBUGS, Zonotrichia atricapilla

INTRODUCTION

Monitoring a species of interest to determine its popula-

tion size, trend, or distribution requires robust, unbiased

estimators of abundance or, at a minimum, a parameter

directly proportional to abundance. Incomplete detection

of animals during surveys can bias population estimates

and lead to incorrect assessments of conservation status or

of the effectiveness of management actions (Burnham

1981, Rosenstock et al. 2002, Thompson 2002, Norvell et

al. 2003, Kéry and Schmid 2004). Numerous methods exist

to adjust counts of animals for incomplete detection,

including distance sampling (Buckland et al. 2001, Johnson

et al. 2010), time removal (Farnsworth et al. 2002, Etterson

et al. 2009), repeated counts (Royle and Nichols 2003,

Royle 2004), double observer (Cook and Jacobson 1979,

Nichols et al. 2000), mark–recapture (Laake et al. 2011),

double sampling (Bart and Earnst 2002), and some

combinations thereof (e.g., Farnsworth et al. 2005, Sólymos

et al. 2013). The applicability of these methods varies

widely with respect to the parameter of interest, behavior

of the species, characteristics of the survey area, timing of

the survey, and logistical, time, and resource constraints.

For example, multiple-observer methods require addition-

al manpower; repeated surveys within a season are

expensive, logistically challenging, and affected by closure

assumptions; and mark–recapture methods are not always

possible or practical to implement.

Addressing imperfect detection is complicated by

multiple causal mechanisms. Nichols et al. (2009) identi-

fied 2 parts of the detection process during bird surveys:

coverage probability and detection probability. Coverage

probability is the probability that the location of the bird is

within a sampling unit at the time of the survey and is the

product of the probability that (1) a bird has a home range

that overlaps the sampling unit (ps) and (2) is present in

the study area at the time of the survey (pp) (Nichols et al.

2009). These probabilities are a function of the timing and

spatial coverage of a survey, and their computation is often

based on knowledge of the study design. Detection

probability also consists of 2 components: availability

(pa), which is the probability that an animal is present in

the survey area and signaling its presence to the observer

(e.g., a bird is vocalizing or is in view); and perceptibility

(pd), which is the probability that an animal available for

detection (e.g., a bird sings) is detected by the observer

(Marsh and Sinclair 1989). Availability and perceptibility

are often strongly influenced by the animal’s cue-

production rate, the distance between the animal and the

observer, and the observer’s sensory abilities; these factors,

in turn, may vary significantly with other influences such

as time of season, time of day, habitat, and weather

conditions (e.g., Farnsworth et al. 2002, Alldredge et al.

2007c, Nichols et al. 2009). Several methods or combina-

tions of methods can estimate both components of

detection probability; however, most require either multi-

ple observers or repeat surveys at a point within a short

period to avoid violating the assumption of population

closure (e.g., time-of-detection, robust design, or multiple-

observer capture–recapture; Bailey et al. 2004, Alldredge et

al. 2007a, Nichols et al. 2009).

Distance sampling and time removal are methods that

require only a single survey and observer. For distance

sampling, an observer measures the distance to each

detected animal. This method is used extensively in line-

transect and point sampling because of its relative

efficiency in terms of cost and time (Buckland et al.

2001, Rosenstock et al. 2002, Norvell et al. 2003, Sillett et

al. 2012). Conventional distance sampling will, however,

produce negatively biased estimates of density if the

critical assumption of perfect detection at zero distance

is violated (Buckland et al. 2001). Such conditions may

arise if an animal that is present at the survey point does

not give a cue during the survey period (availability bias) or

if the observer does not detect a cue that was given

(perception bias) (Laake and Borchers 2004).

To account for availability in avian point-count surveys,

Farnsworth et al. (2002) described a time-removal model

(also called ‘‘time-to-detection model’’) that treats subsets
of the survey period as independent replicates (‘‘occa-
sions’’) in which birds are ‘‘captured’’ (i.e. counted) and
mentally removed from the population (i.e. not counted

again) during later subperiods. As animals within a closed

population are counted and removed from further

consideration, the number of individuals available for

detection will decrease through time. Hence, following the

logic of a removal model to estimate population size

(Zippin 1958), Farnsworth et al.’s (2002) model estimates
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the proportion of the population never detected during a

survey and, by subtraction, the proportion of the

population available for detection (pa).

Together, distance-sampling and time-removal methods

can quantify both important components of detection.

Farnsworth et al.’s (2002) method relies on birds perceived

within a time interval to estimate availability and, thus,

estimates the product of pa and pd (Marsh and Sinclair

1989, Nichols et al. 2009); including distance sampling

allows separation of each detection component. Addition-

ally, combining these methods allows explicit modeling of

heterogeneity in detection probability. Some heterogeneity

arises from individual variation in the frequency, intensity,

or duration of signals to the observer, which for songbirds

is often strongly related to distance from the observer, date

within season, and time of day. Such heterogeneity is often

ignored when modeling detection probability (Farnsworth

et al. 2002, 2005), but ignoring it can positively bias

estimates of detection probability (and negatively bias

density estimates) because the group of detected individ-

uals contains a greater proportion of the population that is

consistently easy to detect during repeated surveys (e.g.,

birds closer to the observer or singing more frequently)

than is included in the group of undetected individuals.

Conventional distance sampling is robust to some

individual heterogeneity in pd as long as other modeling

assumptions are met (Buckland et al. 2001). Perhaps the
greatest benefit of combining distance sampling with a

method to address availability, such as Farnsworth et al.’s

(2002) time-removal model, is that it allows one to relax

the assumption that detection probability on the line or at

the point is perfect (i.e. p(0)¼ 1; Buckland et al. 2001:30).

Pollock and Kendall (1987) recommended mark–recapture

methods to estimate detection probability as an alternative

to distance sampling because of this bias. However,

heterogeneity tends to increase at greater distances from

the observer (Laake et al. 2011) and may render capture–

recapture-based multiple-observer methods of all but the

smallest fixed-radius areas subject to such bias unless

detection probability is also modeled as a function of

distance.

Combining distance-sampling with time-removal meth-

ods can address this issue, along with heterogeneity, using

less survey effort than multiple observers or repeated

surveys. An observer need only record the time interval

and estimated distance to each animal when it is first

detected during a single survey. Such efficient survey

methodology is particularly attractive for large-scale

wildlife surveys, especially in areas where temporally

repeated sampling is logistically difficult and expensive.

Farnsworth et al. (2005) first described a combined

distance-sampling and time-removal model for auditory

point-count surveys that assumes the following: (1) A bird

that is present during a survey may be detected only if it

vocalizes; and (2) detection probability, given availability,

declines as a function of distance from the observer. Thus,

overall detection probability p is the product of each

component of detection, p ¼ pa 3 pd (Farnsworth et al.

2005). They implemented the model in Program SURVIV

(White 1992), but their model did not include ways to

incorporate covariates on either component of detection

or an integrated way to estimate abundance. Availability

and perceptibility can be highly influenced by weather,

observer ability, habitat, species, seasonal date, and time of

day, among other factors (Alldredge et al. 2007c,

Fitzpatrick et al. 2009). Although estimates of density

across broad regions and survey periods may be robust to

unmodeled sources of heterogeneity in detection (i.e.

‘‘pooling robust’’; Buckland et al. 2001), not incorporating

sources of variability at the survey-point level may lead to

biased estimates of detection probability and density at

more refined spatial and temporal scales (Thompson

2002). Wildlife are not distributed evenly across the

landscape, and habitat and environmental factors may
strongly influence the abundance of a species at a given

survey point. Elucidating patterns and factors that

influence detection and abundance is often of primary

interest to ecologists and can provide important informa-

tion to inform monitoring and management efforts,

beyond how many animals are present in an area.

Royle et al. (2004) developed a hierarchical distance-

sampling model for spatially replicated counts with a

distance-sampling protocol to estimate and model abun-

dance adjusted for pd (also see Hedley and Buckland 2004,

Johnson et al. 2010, Sillett et al. 2012, Oedekoven et al.

2013, Schmidt and Rattenbury 2013). Etterson et al. (2009)

created a similar hierarchical N-mixture model using

Farnsworth et al.’s (2002) time-removal method to estimate

abundance adjusted for pa. In these models, covariate

effects on both abundance and detection can be modeled

directly as a generalized linear model. Especially when

implemented in a Bayesian framework, straightforward

extensions include fixed and random effects, spatial

autocorrelation, excess zeros, and replicated counts

through time (Thogmartin et al. 2004, Martin et al. 2005,

Etterson et al. 2009, Sauer and Link 2011, Kéry and Schaub

2012). However, because models of both Royle et al. (2004)

and Etterson et al. (2009) incorporate only 1 component of

detection probability (i.e. pd or pa, respectively), the

modeled detection probability is really a conflated estimate

of pa 3 pd and the resulting abundance estimates are

subject to unmeasured amounts of negative bias.

Here, we extend and integrate Farnsworth et al.’s (2005)

combined time-removal and distance-sampling model for

point-count surveys and Royle et al.’s (2004) hierarchical

distance-sampling model into a Bayesian hierarchical N-

mixture framework with separate processes for abundance

(i.e. the total number of birds present in the surveyed area
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during the survey period, N), perceptibility (pd), and

availability (pa). Our new model (1) accommodates

covariates on all processes, (2) allows estimates of

detection-adjusted population density, (3) allows modeling

of spatial autocorrelation, and (4) accounts for extra

dispersion in the form of zero inflation (Table 1). To

illustrate our model, we use simulated data and field

examples from avian point-transect data collected across a

broad landscape in Alaska. Furthermore, we implement

the model in a Bayesian framework using the accessible

JAGS program (Plummer 2003), allowing flexible model

development by nonspecialists.

METHODS

Model Description
We created this model to accommodate single-visit point-

transect data replicated at k¼ 1, 2, . . . , K points in an area

of interest. At each survey point during a prescribed period

(e.g., 5 min), a single observer records distance from the

central observation point to each bird detected and the

survey time elapsed to its initial detection (i.e. time-to-

detection), at which time the bird is ‘‘removed’’ from

further counting. For each bird detected i, radial distance is

recorded into discrete classes b ¼ 1, 2, . . . , B out to a

maximum distance (maxd) and time-to-detection is

assigned to a time interval j ¼ 1, 2, . . . , J. The observed

data, then, are the counts of individuals at each point (yk)

and the period (ji) and distance class (bi) for individuals i¼
1, 2, . . . , y, where y is the total number of birds detected

across all spatial sample units. Although the model is

formulated using discrete time and distance intervals for

ease of computation, truly continuous observations can be

accommodated to greater levels of precision simply by

using a large number of fine intervals.

The model requires the following primary assumptions:

(1) Points are placed randomly with respect to bird

distribution; (2) birds are detected at their initial location

prior to any movement; (3) birds are identified without

error (e.g., with respect to species and without double

counting at a point); (4) distances are measured accurately

or observations are recorded in the appropriate distance

classes; (5) pa and pd are independent; (6) the population is

closed during surveys to births, deaths, immigration, and

emigration; and (7) the entire population is present during

surveys (i.e. probability of presence, pp ¼ 1; Nichols et al.

2009).

This model uses Royle’s (2004) N-mixture model with a

novel observation-level formulation of Farnsworth et al.’s

(2005) joint distance-sampling and time-removal model to

estimate detection probability (Farnsworth et al. 2002).

The observation-level formulation is convenient to imple-

ment in popular Bayesian analysis software (e.g., JAGS;

Plummer 2003) and also allows for some flexibility to

incorporate other effects at the individual level. The model

is expressed in terms of the ‘‘conditional likelihood,’’ in
which the observation model is expressed as conditional

on the observed count of individuals at each sample point

(yk). Then a second model component is described for yk,

conditional on the population size at each sample point

(Nk), which is assumed to be a random variable itself so

that one can model variation among sample points in the

population. Analyzing the joint likelihood (e.g., Royle et al.

2004) cannot be done in JAGS easily because the

multinomial parameter Nk cannot be an unobserved

random variable. However, it is straightforward to

implement the model on the basis of factorization of the

joint model into 3 hierarchical levels: individual-level data

(i.e. observations conditional on yk), point-specific counts

(i.e. yk conditional on Nk), and population size (i.e. Nk).

Level 1: Individual-level Data
We assumed independence of time-of-removal and

distance so that the overall probability of detection can

be expressed as the product of the probabilities of

availability (pa), derived from detections during J time

intervals, and perceptibility (pd), derived from detections

within B distance classes. Cell probabilities p can be

expressed as a categorical distribution for individual

observations such that dclassi is the distance class and

tintervali is the time interval of detection of individual i.

Thus, the observation model, specified conditional (c) on

TABLE 1. Summary of the capabilities that we incorporated into our distance-sampling and time-removal N-mixture model
compared with those of similar existing models.

Explicit abundance model allowing

Individual-level
formulation

Heterogeneity
in availability

Heterogeneity
in perceptibility

Spatial covariates
on abundance

Time removal þ
distance sampling

Bayesian
implementation

This model X X X X X X
Royle et al. (2004) X X
Farnsworth et al. (2005) X X X
Etterson et al. (2009) X X
Oedekoven et al. (2013) X X X
Sólymos et al. (2013) X X X X
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yk, has the following 2 components:

tintervali~Categoricalðpc
aÞ

dclassi~Categoricalðpc
dÞ

for i ¼ 1, 2, . . . , yk.

For pa, we generally followed Farnsworth et al. (2002) in

constructing a time-removal model to estimate availability

based on initial detections of birds within each of 3 equal

time intervals, but we added a covariate model to address

individual heterogeneity. We expected point-level covari-

ates (e.g., date within season and time of day each point

was surveyed) to provide useful information on the

detection process for all individuals in the population.

Specifically, individuals are detected with probability a

during each time interval and the conditional cell

probabilities pc
a are defined by

pc
ajk
¼

pajk

pak

where pajk
is the probability of availability in time interval j

at point k and pak is the probability of an individual being

available during at least 1 time interval at point k. The

time-interval-specific probability of availability is calcu-

lated as pajk ¼ ak(1 – ak)
j�1, where ak is an individual’s

probability of detection during 1 time interval at point k.

We accounted for heterogeneity by modeling point-level

covariates x affecting the probability of availability as a

logistic regression logit(ak) ¼ a þ bxxk. We derived point-

specific pak by summing the time-interval-specific proba-

bility of availability pajk across j (j ¼ 1 to J), where

pak ¼
XJ

j¼1
pajk

We also explored 2 alternative models to account for

heterogeneity in availability: a simple 2-point mixture model

and a combined mixture–covariate model. (1) In the simple

mixture model, we considered the case (general model Mc

described in Farnsworth et al. 2002) in which the population

as a whole is modeled simply as a combination of 2 groups,

the first of which comprises birds that are readily available for

detection (e.g., dominant males that sing often or for longer

duration), all of which are assumed to be detected during the

first time interval (i.e. pa¼1). Individuals in the second group,

comprising an expected proportion c of the population, are

less available (e.g., submissive males that sing less frequently)

and are detected with probability a during each time interval

(where a ¼ 1 � q; cf. Farnsworth et al. 2002). Multinomial

probabilities are specified as in our covariate model above,

except that they incorporate c and are not indexed by point k:

for j¼1, pa1¼1 – c(1 – a) and for j¼2 to J, paj¼ ca(1 – a)j�1.

(2) In the combined model, we modeled the population as a

combination of 2 groups as in the preceding simple mixture

model, but then further modeled availability ak of the second

(less available) group as a logistic regression function of point-

level covariates, as in our covariatemodel.We found that both

of these approaches were inferior to our covariate model

during simulations and analysis of field data. In the simple

mixture model, estimates of pa were similar to those from the

covariate model but much less precise, with concomitant

effects on precision of density estimates. In the combined

model, we found problems of nonidentifiability in attempting

to estimate both c and ak, and resulting estimates of pa and

density were again highly imprecise. In both the simple

mixture and combined models, estimates of c and a rely on

the detections of individuals in group 2, thereby leading to

poor estimability if pa is high or c is low, or both. Furthermore,

heterogeneity in detection probabilities has been demon-

strated to be problematic in analysis of capture–recapture

data if there is uncertainty in the underlying distributions

(e.g., beta vs. logit normal distribution), even when sample

sizes are large (Link 2004). We therefore recommend and

present results for pa using only our covariate model

approach, which uses all detections to inform pa and includes

only biologically meaningful covariates.

For modeling probability of perception, we followed a

similar approach. The conditional multinomial cell prob-

abilities for distance are constructed as

pc
dbk
¼ pdbk

ðpdk Þ

where pdbk
is the probability of detection in distance class b

at point k and pdk is the probability of being detected in any

distance class within the truncation radius at point k. We

defined the multinomial cell probability p in distance class

b using a rectangular rule of approximating the integral

where the probability that distance r is within the bounds

of b with width d is

prb ¼ Pr rb �
d
2
� r � rb þ

d
2

� �
~gðrÞbk f ðrÞb

and the half-normal distance function is

gðrÞbk ¼ exp � r2b
2r2

k

� �

where rb is the midpoint radial distance in distance class b

and

f ðrÞb ¼
2rbdb
max2d

is the probability density function of radial distance from

the observation point for each distance class out to the
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maximum truncation distance maxd (Buckland et al. 2001).

The scale parameter rk represents the rate of decay of

g(r)bk as a function of distance for each point. Point-level

covariates x on pd can be modeled as a log-linear function

of rk where log(rk) ¼ log(r0) þ bxxk. We derived point-

specific pdk by summing the multinomial cell probability

pdbk, the probability that an individual was detected at point

k in distance bin b, across b (b ¼ 1 to B), where

pdk ¼
XB

b¼1

pdbk :

Level 2: Point-specific Counts
Because we wanted to examine goodness-of-fit of the

availability component of the model independently from

that of the perceptibility part of the model, we expressed

the model for the point-level counts yk as the product of 2

components. First, we estimated the number of individuals

in the local population that were available for sampling

(navailk) as a random variable with sample size Nk and

probability of availability pak where navailk ~ Binomial(Nk,

pak). Then, the observed (i.e. detected) number of

individuals per point yk is a binomial random variable

with sample size navailk and probability of detection pdk:

yk ~ Binomial(navailk, pdk).

Level 3: Population Size
Because abundance may vary among points in relation to

measurable attributes, we modeled the population size for

each point Nk as a Poisson distribution with mean

expected value k, Nk ~ Poisson(kk) (Royle et al. 2004).

Point-level covariates x affecting abundance can be

incorporated into the expected value where log(kk) ¼ a þ
bxxk. Density Dk is then Nk-adjusted for the area surveyed

A. For example, birds detected within a 300-m radius of

the observer would have

A ¼ p3 3002

10; 000
¼ 28:27 ha

and

Dk ¼
Nk

28:27 ha

Simulated Dataset
We investigated model performance by simulating data to

evaluate model assumptions and examined the range of

parameter values under which our model provides

acceptable estimates. We simulated overdispersed point-

transect data with pd , 1 and pa , 1, both of which were

influenced by several covariates, and with spatial autocor-

relation among points within a transect. Ignoring spatial

autocorrelation can lead to underestimating standard

errors and overfitting models (Legendre 1993). Thus, we

included transect-specific intercepts at as a random effect

on the expected count to account for non-independence

among points within a transect where log(kk)¼ atþ bxxk.

We modeled a population of a simulated grassland bird

species as a function of moderately correlated (rmax¼ 0.5)

covariates (i.e. habitat). Abundance was positively or

negatively associated with the proportion of grass (Grass,

bGrass ¼ 1.0), agriculture (Ag, bAg ¼ �0.5), forest (Trees,

bTrees¼�0.05), and wetland (Wet, bWet¼ 0.5; Wet2, bWet2¼
�0.5) at the survey point. Furthermore, pd declined with

the proportion of trees at a point (b.dTrees ¼�0.3) and pa
declined with date within season (Date, b.aDate¼�0.3). We

simulated data at 100 points surveyed along 10 transects of

10 points each using baseline values of 5 distance classes, 3

equal time intervals, maximum truncation distance maxd¼
300 m, pa¼ 0.9, pd¼ 0.4, and k ~ 9. We further examined

model performance when availability and perceptibility

were low (pa ¼ 0.4, pd ¼ 0.4, and k ~20). We created 500

dataset realizations for each scenario to assess bias and

coverage of the 95% credible intervals (CIs) for each

parameter of interest. We estimated scaled relative bias as

the deviation of each realized parameter estimate minus

the true value scaled as a proportion of the true value,

where

relative bias ¼ estimate� truth

truth

We defined ‘‘coverage’’ as the percentage of realizations

with 95% CIs that included the true value for each

parameter. R code to simulate the dataset and create the

JAGS model used in this example are provided in

Supplemental Material Appendices A and B.

Field Study
We further evaluated the model using empirical survey

data collected in southwest Alaska. From mid-May to

mid-June, 2004–2008, 5 observers conducted unlimited-

radius point counts of birds primarily in upland habitats

(.100 m elevation) at 1,021 points along 169 transects in

63 randomly selected sample plots within 3 national

parks: Aniakchak National Monument and Preserve,

Katmai National Park and Preserve, and Lake Clark

National Park and Preserve (Ruthrauff et al. 2007,

Ruthrauff and Tibbitts 2009). Points were spaced ~500
m apart along transects with a random start and oriented

across habitat and elevational gradients. Habitats in the

parks are largely unfragmented except by natural distur-

bance (e.g., volcanic eruptions and wildfires). Observers

recorded exact radial distance (with laser rangefinder) and

exact time to initial detection for each bird during 5-min
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point-transect surveys and recorded data on habitat and

physiographic features at each point. Observers detected

.100 species of landbirds and shorebirds, but we

illustrate the model with 2 examples: Golden-crowned

Sparrow (Zonotrichia atricapilla) and 2 ptarmigan

species, Willow Ptarmigan (Lagopus lagopus) and Rock

Ptarmigan (L. muta). Because the numbers of observa-

tions were low and the detections were primarily visual for

both species of ptarmigan, we estimated both availability

and perceptibility jointly, but examined species-specific

habitat associations for abundance.

After an exploratory analysis of the raw distance data

(Buckland et al. 2001), we truncated ~10% of the farthest

observations, which were those beyond 280 m for Golden-

crowned Sparrows and beyond 450 m for ptarmigan. We

then created 4 unequal distance bins that had approxi-

mately equal numbers of observations and adequately fit a

half-normal density function. We divided the survey into 3

equal (100-s) periods for estimating availability. We used

an analysis of variance of mean detection distance by time

interval to examine the assumption of independence

between distance and time intervals within the selected

truncation radius. After finding evidence of increasing

mean detection distance in later time intervals only for
Golden-crowned Sparrow, we reran the models with data

truncated at a smaller radius (200 m) within which the

independence assumption was satisfied. We compared

resulting density estimates to assess the effect of violating

this assumption for this species.

We modeled 8 coarse-scale habitat categories, elevation,

and slope as covariates on abundance. We derived

elevation and slope from the National Elevation Dataset

(Gesch 2007) and summarized mean values within a 150-

m radius of each point. We examined elevation effects for

Aniakchak National Monument and Preserve separately

from the other 2 parks combined because the broad array

of habitats sampled across Lake Clark and Katmai

(approximately 100–1,600 m) were found to be very

compressed elevationally (to ~600 m) in Aniakchak, most

likely because of the more severe weather conditions

(wind, snow, and cold) typical of the Aniakchak area

(Ruthrauff and Tibbitts 2009). Phenology of vegetation was

relatively delayed the year Aniakchak was sampled, and the

highest-elevation points were extensively snow covered

(Ruthrauff and Tibbitts 2009). Across all parks, habitat

categories included the following: shrub ,20 cm tall and

mesic herbaceous cover (Dshrubherb); shrub .20 cm tall

(Shrub); bare ground and perennial ice and snow (Bare-

snow); open water (Water); wetlands and wet sedge

(Wetland); coniferous forest consisting of white spruce

(Picea glauca), Sitka spruce (P. sitchensis), or black spruce

(P. mariana) (Spruce); mixed deciduous–coniferous forest

(Mixed); and deciduous forest (Dec). Habitat was charac-

terized to a 150-m radius at most points (n¼ 779), except

those in closed forest or tall shrub habitat with limited

visibility, where habitat was characterized within 50 m (n¼
242). We assumed that habitat composition recorded by

observers applied to larger spatial scales because habitat

composition was strongly correlated at multiple scales;

correlation between habitat composition at 150 m and 800

m was 0.81.

We modeled pd as a function of the following covariates:

wind speed (mph), 2 observer groups (i.e. multiple

observers were grouped by hearing ability), and the

proportion of dense habitat cover (i.e. closed tall shrub

and forest cover) within either a 50- or 150-m radius of the

point. We modeled pa as a function of Julian date within

season and time of day. For Golden-crowned Sparrow, we

restricted analysis to detections of singing males; but for

ptarmigan, we analyzed all visual and auditory detections

of adults, including males, females, and those of unknown

sex. Thus, to estimate total breeding density of Golden-

crowned Sparrows, we assumed a 50:50 sex ratio and

multiplied estimated density of males by 2. We fit transect-

specific intercepts as described in the simulated data

example. We assumed that either (1) abundances at higher

levels of spatial nesting (e.g., transects within plots and

plots within parks) were independent because of the large
distances between transects, plots, and parks; or (2) the

spatial autocorrelation at larger scales was related to

features of the landscape, which could be alleviated with

the inclusion of relevant spatially structured environmen-

tal covariates like the ones we included in our analysis

(Wintle and Bardos 2006).

We accounted for an overabundance of zero counts

during surveys, which can bias model fit when birds are

not observed at a large proportion of survey points (Martin

et al. 2005, Joseph et al. 2009). To do so, we included a

zero-inflation term z multiplied by the Poisson mean kk.
The population size per point is then a Poisson

distribution with mean k0, where k0 is the product of the

expected count k and a Bernoulli draw z of the zero-

inflation parameter w: z~BernoulliðwÞ.

Model Implementation and Goodness-of-Fit
For simulated and field data, we conducted a Bayesian

analysis in JAGS version 3.2.0 (Plummer 2003), in which

we called JAGS remotely from R version 2.15.2 (R Core

Team 2012). We standardized (i.e. x̄ ¼ 0, SD ¼ 1) all

covariates to facilitate convergence. We assigned random

effects including nested point-within-transect intercepts

and observer groups on perceptibility as normal distribu-

tions with mean l and precision s (i.e. s¼ 1/variance). For

fixed effects, including the hyperparameter l, we specified

vague normal prior distributions with mean 0 and variance

100 for coefficients; for variances, we chose uniform priors

ranging from 0 to 1,000 at the r scale (Rota et al. 2011,

Kéry and Schaub 2012). We conducted 100,000–250,000
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iterations from 3 Markov chains, thinned by 1 in 50, and

discarded the first 50,000–100,000 draws as burn-in. We

assessed model convergence using the Gelman-Rubin

potential scale reduction parameter, R̂, where R̂ ¼ 1 at

convergence (Gelman and Rubin 1992). We accepted

coefficient estimates with R̂ between 1.0 and 1.1. Finally,

for the availability and perceptibility components of the

models, we used Bayesian P values generated from the

posterior predictive distributions to assess goodness-of-fit

(Gelman et al. 1996), where a P value close to 0.5 indicates

a fitting model but a value close to 0 or 1 suggests doubtful

fit (Kéry 2010:108). For each model parameter, we present

the point estimate with 95% CIs.

RESULTS

Simulated Dataset

Point estimates of model parameters based on posterior

summaries resembled true parameter values for all model

components, and coverage ranged from 0.87 to 0.98 for the

default model in which availability was high (pa ~ 0.9) and

perceptibility was low (pd ~ 0.4) and from 0.82 to 0.98

when both availability and perceptibility were low (~0.4).
Both scenarios had similar numbers of simulated detec-

tions (~300; Table 2). Although coverage was similar for

the 2 simulated datasets, the precision of the abundance

estimate was lower when availability was reduced, despite

similar numbers of observations (Table 2 and Figure 1). To

compare results from binned (B ¼ 5) versus essentially

unbinned distance data, we analyzed the same simulated

dataset (high availability) with 300 one-meter distance

classes. Exploratory analysis of unbinned data resulted in

similar posterior distributions of mean pd per points but

was computationally less efficient, with ~503 greater run

times needed to reach convergence (i.e. ~7 days vs. ~3.5
hr on a computer with a 3.4-GHz processor and 16 GB

memory). Similarly, when we divided the data into 10 vs. 3

periods, the resulting mean pa was similar to the baseline

values but needed ~103 greater run time to reach

convergence.

Field Results

For this analysis we included 536 male Golden-crowned

Sparrows detected within a maximum truncation distance

of 280 m and 162 ptarmigan (nwillow ¼ 92, nrock ¼ 70)

during 1,021 point-transect surveys in southwest Alaska.

After detections were binned into 4 distance classes,

detection functions appeared to be generally appropriate,

with little clustering or spikes at intermediate distances.

Markov chains in models reached convergence (Rmax ,

1.1), and Bayesian P values ranged from 0.33 for ptarmigan

availability to 0.67 for sparrow perceptibility, which

suggests that the model adequately fit the data. Mean

availability for detection during the 5-min surveys (pa) was

0.95 (95% CI: 0.93–0.97) for sparrows and 0.64 (95% CI:

0.42–0.85) for ptarmigan. Cumulative perceptibility (pd, i.e.

TABLE 2. Results from 500 realized datasets with 95% Bayesian credible intervals (CIs) in relation to the true value of covariate
coefficients and model parameters and the proportion of simulations with 95% CIs that included the true value (coverage). We
simulated data at 100 points located in 10 transects with 10 points each, using baseline values of 5 distance classes and 3 time
intervals. We created 2 scenarios: high availability, where pa ~ 0.9, pd ~ 0.4, k ~ 9, and y ~ 300 (95% CI: 254–333); and low
availability, where pa ~ 0.4, pd ~ 0.4, k ~ 20, and y ~ 300 (95% CI: 250–333). Model fit for each component of detection probability
was assessed with Bayesian P values. See text for description of covariates.

High availability (pa ~ 0.9) Low availability (pa ~ 0.4)

Mean true
value

Simulated mean
(95% CI) Coverage

Mean true
value

Simulated mean
(95% CI) Coverage

Perceptibility
Tree �0.3 �0.31 (�0.49 to �0.18) 0.96 �0.3 �0.29 (�0.42 to �0.19) 0.95

Availability
Season date �0.3 �0.17 (�0.48 to 0.12) 0.87 �0.3 �0.13 (�0.32 to 0.09) 0.82

Abundance
Tree �0.05 �0.07 (�0.38 to 0.18) 0.94 �0.05 �0.10 (�0.33 to 0.11) 0.95
Ag �0.5 �0.50 (�0.67 to �0.33) 0.96 �0.5 �0.49 (�0.64 to �0.37) 0.99
Wet 0.5 0.52 (0.32 to 0.75) 0.96 0.5 0.49 (0.29 to 0.65) 0.97
Wet2 �0.5 �0.53 (�0.81 to �0.37) 0.94 �0.5 �0.50 (�0.68 to �0.36) 0.99
Grass 1.0 1.00 (0.86 to 1.16) 0.94 1.0 1.01 (0.87 to 1.13) 0.96

Derived parameters
pd 0.40 0.42 (0.35 to 0.51) 0.93 0.40 0.42 (0.36 to 0.49) 0.92
pa 0.90 0.88 (0.81 to 0.94) 0.94 0.41 0.38 (0.24 to 0.58) 0.96
N 855 854 (682 to 1048) 0.96 1913 2,478 (1,250 to 4,272) 0.98

Model fit
Bayesian P value (pd) – 0.52 (0.44 to 0.58) – 0.49 (0.36 to 0.58) –
Bayesian P value (pa) – 0.52 (0.44 to 0.58) – 0.49 (0.36 to 0.58) –
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the probability of detecting an individual within the

maximum truncation distance, given that it was available

to be detected) was 0.39 (95% CI: 0.33–0.46) for sparrows

within 280 m and 0.33 (95% CI: 0.24–0.41) for ptarmigan

within 450 m; pd within 100 m of the observer was 0.87 for

sparrows and 0.93 for ptarmigan. Perceptibility was

negatively influenced for sparrows by the amount of dense

cover at the survey point (Figure 2B), but there was no

evidence of cover effects for ptarmigan, and no suggestion

of wind-speed effect or substantial difference between the

2 observer groups for either ptarmigan species (Figures 2A

and 3A; Table 3). Cumulative perceptibility at mean values

for wind speed and dense cover were slightly greater for

observer group 1 than for group 2 for both sparrows

(group 1 pd ¼ 0.40, 95% CI: 0.35–0.47; group 2 pd ¼ 0.36,

95% CI: 0.31–0.41) and ptarmigan (group 1 pd¼ 0.34, 95%

CI: 0.26–0.45; group 2 pd ¼ 0.31, 95% CI: 0.24–0.39), but

CIs overlapped broadly (Table 3). Availability (pa) of

sparrows for detection decreased as the season progressed

(Figure 2C), and availability of ptarmigan decreased with

time of day (Figure 3B and Table 3).

For Golden-crowned Sparrows, abundance was posi-

tively associated with shrub habitat .20 cm tall and with

deciduous forest and showed a quadratic relationship with

elevation in Katmai and Lake Clark (Figure 2D–2F and

Table 3). Abundance of both species of ptarmigan was

negatively associated with mixed and coniferous forest

types (Figure 4A–4D and Table 3). Both ptarmigan species

showed a quadratic relationship with elevation in Katmai

and Lake Clark, but this relationship held only for Rock

Ptarmigan in Aniakchak. Predicted abundance peaked at

lower elevations in both regions for Willow Ptarmigan

than for Rock Ptarmigan (Figure 4E–4H and Table 3). The

estimated zero-inflation factor z was 1.00 (95% CI: 0.99–

1.00) for sparrows and 0.99 (95% CI: 0.81–1.00) for

ptarmigan, which indicated that there was not an excess of

true zero counts (Martin et al. 2005). Mean predicted

density of individuals (ha�1) across points from 2004 to

2008 was 0.117 (95% CI: 0.042–0.306) for Golden-crowned

Sparrow, 0.007 (95% CI: 0.001–0.031) for Rock Ptarmigan,

and 0.006 (95% CI: 0.001–0.026) for Willow Ptarmigan.

For Golden-crowned Sparrows detected within maxd¼280

m, mean detection distance increased by ~40 m from the

first to the third period (F ¼ 4.50, df ¼ 2 and 534, P ,

0.001), violating the assumption of independence between

pd and pa. When we reran the models with maxd¼ 200 m,

within which detection distance was independent of time

FIGURE 1. Smoothed frequency distributions of parameter
estimates for (A) abundance, (B) perceptibility, and (C)
availability under 2 scenarios of mean availability of individuals
for detection during point-transect surveys: high (pa ~ 0.9, solid
lines) and low (pa ~ 0.4, dashed lines). Parameter estimates from
500 realized datasets were centered by subtracting estimates
from true simulated values (truth — realized) and scaled by
dividing by the mean true value of each simulation. Scaling the
estimates provides the relative uncertainty around each
parameter estimate in relation to true values. For example, a
value of 0.2 is equivalent to stating that the estimated value was
~20% greater than the true value. We evaluated the following 2
scenarios at 100 points, adjusting abundance to obtain similar
numbers of detections under the 2 levels of availability: high

 
availability (k ~ 5, y ~ 300, pa ~ 0.9, pd ~ 0.4, N ~ 900) and low
availability (k ~ 20, y ~ 300, pa ~ 0.4, pd ~ 0.4, N ~ 1900) , where
k ¼ expected abundance per point, y ¼ number of individuals
detected, pa ¼ availability, pd ¼ perceptibility, and N ¼ total
population size.
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FIGURE 2. Modeled relationships between covariates and (A–C) components of detection probability and (D–E) predicted
abundance per point for Golden-crowned Sparrows observed during 1,021 point-transect surveys in 3 national parks in southwest
Alaska. (A) Fitted detection functions for observer group 1 (solid line) and observer group 2 (dashed line) in relation to frequencies of
observations in each distance bin scaled by detection distance. (B) Perceptibility, given availability for detection (pd), declined with
proportion of dense habitat cover (closed tall shrub and forest) at a point and averaged 0.39 (95% credible interval [CI]: 0.33–0.46)
within a 280-m radius of the observer. (C) Availability for detection, given presence at a point, (pa), averaged 0.95 (95% CI: 0.93–0.97)
during the 5-min surveys and declined with season date (Julian date within year; x̄¼ 144; May 14). Predicted abundance per point
within a 280-m radius (~25 ha) averaged 2.9 adults (95% CI: 1.0–7.5) and (D) increased with the proportion of shrub . 20 cm tall and
(E) deciduous forest within a 50-m or 150-m buffer around each point and (F) decreased with elevation in Katmai and Lake Clark. We
provide predicted values per point (points) and loess-smoothed trends (solid lines) with 95% CIs (dashed lines).
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(F¼ 1.06, df¼ 2 and 443, P¼ 0.29), we obtained a similar

but less precise estimate of density (mean¼ 0.121, 95% CI:

0.023–0.324).

DISCUSSION

Imperfect detection of birds during surveys, whether due

to birds’ failure to give cues during the allotted time or to

observers’ failure to perceive them, has long hampered

count-based efforts aimed at estimating population size

and distribution. Here, we have combined a time-removal

protocol with distance sampling in a highly flexible

hierarchical model for inference about abundance that

simultaneously accounts for both components of detection

probability—availability and perceptibility—for point-

transect surveys. Importantly, our model can be used to

predict abundance in nonsurveyed areas within a sampling

frame, based on the relationship between count data and

spatially indexed environmental covariates, to produce

distribution maps and estimates of regional or total

population size (cf. Barker et al. 2014).

Our model builds on the seminal work of others but has

several characteristics not found in earlier models (Table

1). Farnsworth et al.’s (2005) combined distance-sampling

and time-removal model allowed for the estimation of

both availability and perceptibility components of detec-

tion probability during a single point count. Our model

extends that framework to (1) allow for inclusion of

covariates on detection probability, (2) explicitly incorpo-

rate spatial replication of counts (i.e. providing point-

specific estimates of pd), and (3) link estimates of detection

probability to abundance. Burnham et al. (2004) outlined a

full-likelihood approach that combined the time-removal

model with distance sampling, but our model provides

point-specific estimates of detection probability. Royle et

al.’s (2004) model extended the hierarchical N-mixture

model of Royle (2004) by incorporating spatially replicated
observation and process components for data collected

using distance sampling to estimate perceptibility. Sillett et

al. (2012) further expanded functionality to include

covariates on perceptibility. Our model extends both

frameworks even further to model point-transect data

and incorporate a method to address availability. Etterson

et al. (2009) incorporated time-removal protocols into a

hierarchical N-mixture model to account for availability

bias, but the model was unable to separate availability from

perceptibility, which is typically the larger source of

detection bias in avian point counts (Nichols et al. 2009).

Most recently, Sólymos et al. (2013) developed a combined

time-removal and distance-sampling model to estimate

singing rate and perceptibility. Our approach is similar but

integrates density estimation into the likelihood, whereas

Sólymos et al. (2013) relied on an offset approach to

estimate density.

Bayesian analysis using Markov chain Monte Carlo has

advantages over maximum-likelihood approaches used in

previous models that include random effects and over-

dispersion parameters (Fiske and Chandler 2011). A

Bayesian framework lends substantially increased flexibil-

ity to the modeling capabilities, for instance, to estimate

spatially explicit density while accommodating extra-

Poisson dispersion, include covariates for all levels of the

model, and incorporate a nested data structure to account

for points being clustered along transects. Furthermore, a

Bayesian framework facilitates extensions to accommodate

counts repeated through time to estimate population

trends (Etterson et al. 2009, Sauer and Link 2011) or

FIGURE 3. Modeled relationships between covariates and
components of detection probability for Willow and Rock
ptarmigan (combined) observed during 1,021 point-transect
surveys in 3 national parks in southwest Alaska. (A) Fitted
detection functions for observer group 1 (solid line) and
observer group 2 (dashed line) in relation to frequencies of
observations in each distance bin scaled by detection distance.
(B) Availability of ptarmigan for detection, given presence at a
point, (pa), averaged 0.64 (95% credible interval [CI]: 0.43–0.85)
during the 5-min surveys and declined with time of day of the
survey (x̄ ¼ 11:15 Alaska Daylight Time). Mean perceptibility of
ptarmigan, given availability for detection, (pd), was 0.34 (95%
CI: 0.24–0.39) within a 450-m radius of the observer; CIs of all
modeled covariates for perceptibility contained zero.
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population dynamics (e.g., recruitment; Dail and Madsen

2011); alternative mixture distributions for abundance

(e.g., negative binomial); line-transect surveys (e.g., Hedley

and Buckland 2004); dependence between availability and

perceptibility (Alldredge et al. 2007c); covariates on the

zero-inflation parameter (Joseph et al. 2009); and com-

munity modeling (Mattsson et al. 2013).

Heterogeneity in Detection Probability

Importantly, our analytical approach allows one to model

heterogeneity in both components of detection probability.

Latent heterogeneity in capture probability has long been

recognized as an important factor to consider when

estimating the size of a closed population so as to

minimize bias (e.g., Burnham and Overton 1978, Norris

and Pollock 1996). For breeding songbirds, models that

incorporate heterogeneity in availability for detection have

been invariably supported over those that do not (Farns-

worth et al. 2002, Alldredge et al. 2007a, Reidy et al. 2011).

Our empirical example confirmed these findings, in that

we found significant support for a declining detection

probability as the season progressed (most likely due to

less frequent singing). The ability to model point-level

covariates directly, such as date and time of day of the

survey, facilitates less biased estimates of abundance at the

point level.

Our simulations and ptarmigan examples suggest that

although density estimates are likely unbiased, precision is

greatly reduced when mean availability for detection is low

(pa ~ 0.4) compared to high (pa ~ 0.9), primarily because

of the greater uncertainty in estimating the lower pa even

with similar numbers of detections. Low availability

resulted in imprecise estimates, even with a robust sample

size in the simulated dataset (i.e. n ~ 300). Thus, we

TABLE 3. Mean coefficients and derived parameters with 95% credible intervals (CIs) from posterior distributions of Bayesian
hierarchical models that estimated breeding densities of Golden-crowned Sparrows and Rock and Willow ptarmigan in 3 national
parks in southwest Alaska. Observers counted birds during 1,021 point-transect surveys from 2004 to 2008. We divided observers
into 2 groups (Obs1 and Obs2) by ability and provide scale parameters on detection (r) for each group. We report perceptibility (pd)
and availability (pa) of birds detected as well as a zero-inflation parameter (z), and Bayesian P values for the 2 components of
detection probability (i.e. measure of goodness-of-fit). Bold denotes covariates with 95% CIs that do not contain zero (i.e. a measure
of significance). See text for description of covariates.

Golden-crowned Sparrow Ptarmigan species combined

Perceptibility
Obs1 r 133.49 (121.58 to 148.13) 190.02 (163.46 to 230.07)
Obs2 r 122.87 (112.42 to 134.89) 178.06 (155.54 to 206.56)
Wind speed �0.04 (�0.10 to 0.02) �0.07 (�0.17 to 0.02)
Dense cover �0.11 (�0.16 to �0.07) �0.06 (�0.17 to 0.07)

Availability
Intercept 0.66 (0.41 to 0.89) �0.88 (�1.54 to �0.30)
Season date �0.23 (�0.43 to �0.03) 0.21 (�0.34 to 0.73)
Time of day �0.01 (�0.26 to 0.22) �0.36 (�0.66 to �0.06)

Abundance Willow Ptarmigan Rock Ptarmigan
Transect 0.09 (�0.17 to 0.33) �5.46 (�10.18 to �3.07) �6.15 (�8.55 to �3.84)
Shrub 0.65 (0.31 to 1.03) �0.05 (�0.77 to 0.81) 0.16 (�0.58 to 1.00)
Dshrubherb 0.20 (�0.14 to 0.57) �0.08 (�0.76 to 0.73) 0.09 (�0.52 to 0.82)
Dec 0.23 (0.04 to 0.43) �0.68 (�1.77 to 0.14) �5.61 (�11.59 to 0.05)
Mixed �0.16 (�0.46 to 0.15) �6.60 (�15.49 to �1.62) �4.07 (�12.31 to �0.10)
Spruce �0.07 (�0.38 to 0.25) �7.28 (�15.88 to �0.93) �4.96 (�11.43 to �0.03)
Baresnow 0.08 (�0.29 to 0.47) �0.39 (�1.17 to 0.48) 0.12 (�0.58 to 0.94)
Wetland �0.01 (�0.20 to 0.18) 0.03 (�0.32 to 0.39) �0.92 (�2.59 to 0.31)
Water 0.03 (�0.09 to 0.15) �0.51 (�1.44 to 0.08) �0.23 (�0.92 to 0.21)
Slope 0.02 (�0.10 to 0.13) 0.07 (�0.19 to 0.33) �0.10 (�0.42 to 0.19)
Elevation (Aniakchak) 1.50 (�0.19 to 3.24) �1.22 (�5.11 to 2.47) �5.75 (�10.43 to �1.40)
Elevation (Katmai and Lake Clark) �0.25 (�0.49 to 0.01) 0.14 (�0.66 to 0.95) 2.37 (1.10 to 3.83)
Elevation2 (Aniakchak) 0.79 (�0.40 to 2.00) �0.85 (�3.57 to 1.68) �5.42 (�9.97 to �1.73)
Elevation2 (Katmai and Lake Clark) �0.45 (�0.69 to �0.23) �1.64 (�2.76 to �0.72) �1.41 (�2.30 to �0.63)

Derived parameters Combined
pd 0.39 (0.33 to 0.46) 0.33 (0.24 to 0.39)
pa 0.95 (0.91 to 0.98) 0.64 (0.42 to 0.85)

Willow Ptarmigan Rock Ptarmigan
z 1.00 (0.99 to 1.00) 1.00 (0.81 to 1.00) 1.00 (0.93 to 1.00)

Model fit Willow Ptarmigan Rock Ptarmigan
Bayesian P value (pd) 0.67 0.37 0.40
Bayesian P value (pa) 0.41 0.29 0.33
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FIGURE 4. Modeled relationships between covariates and predicted abundance per point for Willow Ptarmigan (WIPT) and Rock
Ptarmigan (ROPT) observed during 1,021 point-transect surveys in 3 national parks in southwest Alaska. Mean abundance per 64-ha
point (450-m radius) was 0.35 adults (95% credible interval [CI]: 0.07–1.58) for Willow Ptarmigan and 0.44 adults (95% CI: 0.09–1.92)
for Rock Ptarmigan. Across all parks, abundance of both species declined with the proportion of (A–B) mixed forest and (C–D)
coniferous forest within a 50-m or 150-m buffer around each point. Abundance of the 2 species differed in relation to elevation in
(E–F) Katmai and Lake Clark versus (G–H) Aniakchak, but in both areas Rock Ptarmigan occurred at higher elevations than Willow
Ptarmigan. We provide predicted values per point (points) and loess-smoothed trends (solid lines) with 95% CIs (dashed lines).

The Auk: Ornithological Advances 131:476–494, Q 2014 American Ornithologists’ Union

488 Bayesian mixture model for avian point counts C. L. Amundson, J. A. Royle, and C. M. Handel

Downloaded From: https://bioone.org/journals/The-Auk on 29 Sep 2024
Terms of Use: https://bioone.org/terms-of-use



caution against designing studies to sample during periods

when detection rates are expected to be low (e.g., low rates

of singing for auditory surveys). For multispecies surveys

for songbirds, for example, one should focus efforts during

morning periods and examine pilot data to determine the

tradeoffs for different species from sampling during

different seasonal periods. Furthermore, simulation studies

similar to ours could be used to determine the sampling

effort needed (e.g., spatial replicates or total observations)

to obtain desired precision for species with inherently low

availability (e.g., those detected primarily through visual

observations).

Farnsworth et al. (2005) stressed that an estimate of area

sampled during a point count is necessary for accurate

estimates of density or abundance. Unless either percep-

tibility or the effective area sampled is known to be

constant, a measure of the area sampled (or perceptibility

within the survey area) is necessary for unbiased inferences

about relative abundance of different species within an

area, of a species across habitats, or of a species across time

(Buckland et al. 2001:299). Our model accounts for

heterogeneity in perceptibility by estimating distance to

each observation—arguably the largest source of individual

heterogeneity in perceptibility (Burnham et al. 2004,
Simons et al. 2009)—and modeling the rate at which

perceptibility declines explicitly as a function of distance.

Our estimates of perceptibility for the Golden-crowned

Sparrow, which gives a loud, clearly whistled song (Nor-

ment et al. 1998), indicate that densities in our study area

would have been underestimated by 55% within a radius of

280 m and 13% within 100 m if we had not corrected

estimates for distance from the observer.

For typical songbird point counts, ignoring distance-

related heterogeneity or accounting for it only as a

covariate in time-removal or capture–recapture (multiple-

observer) models will generally result in estimates of

density with a large negative bias, even if counts are

restricted to a small (e.g., 50-m) radius (Kissling and

Garton 2006, Efford and Dawson 2009, Sólymos et al.

2013). Such bias arises because unmodeled heterogeneity

increases with distance, because only the more detectable

birds are detected as distance increases, which inflates

estimates of detection probability associated with the

perception process (Laake et al. 2011). Furthermore, an

implicit assumption of multiple-observer methods is that

the same group of birds is available for detection by all

observers, which will not hold true if one observer can

detect birds at greater distances than other observers

(Nichols et al. 2000). Restricting counts to a smaller fixed

radius may satisfy this assumption (Nichols et al. 2000) but

will sacrifice observations, result in a loss of precision in

estimates, and still not resolve the problem of variation in

effective area sampled due to spatial heterogeneity in

perceptibility.

Model Assumptions
Although incorporating the time-removal component in

our model allowed us to relax the assumption in

conventional distance sampling that the probability of

detection at the point is perfect, care should be taken to

meet the other primary assumptions: (1) Points are placed

randomly with respect to bird distribution; (2) birds are

detected at their initial location prior to any movement; (3)

birds are identified without error (e.g., with respect to

species and without double counting at a point); (4)

distances are measured accurately or observations are

recorded in the appropriate distance classes; (5) pa and pd
are independent; (6) the population is closed during

surveys to births, deaths, immigration, and emigration;

and (7) the entire breeding population is present at the

study areas. Assumption 1 can be met through proper

study design, such as the stratified random design of our

field example, which will ensure that birds are distributed

independently of the point locations. Assumptions 2–3 can

be problematic if count duration is too long, such that

undetected movement occurs (Rosenstock et al. 2002).

Simons et al. (2009) suggested that among trained

observers, double counting may be a more significant

source of bias than misidentification of some species.
Point-transect sampling is considered a ‘‘snapshot’’
method in which the observer estimates the number of

birds present at a single instant, and even random

movement can cause a positive bias in density estimates

(Buckland 2006). Duration of the count should thus be

long enough to estimate availability but short enough to

minimize undetected movement. Thus, surveys should be

timed to coincide with periods of optimal cue production

(e.g., diurnally and seasonally). Additionally, movement

toward or away from observers is likely more prevalent at

the beginning of surveys, and Ralph et al. (1995)

recommended an acclimation period before beginning

point counts. Surveys in open habitats, such as in our study

area, are less likely to violate the assumption of undetected

movement than those in closed habitats. If the observer is

being swamped during multispecies surveys by large

numbers of individuals, species can be subdivided into

groups and recorded in a series of consecutive surveys to

ensure accurate counts (Buckland 2006).

Meeting assumption 4 of accurate estimation of

distances is less problematic in open habitats, including

our field example, than in forested habitats, where

distances to auditory detections can be difficult to

determine correctly (e.g., Alldredge et al. 2007b, Simons

et al. 2009). In open habitats, observers can use laser

rangefinders and visual cues, such as location of shrub

clusters, to determine the accurate locations of singing but

visually hidden passerines. Experimental studies of broad-

cast vocalizations in forested habitat with dense understory

revealed that errors in distance estimation were particu-
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larly pronounced at distances of ~75 m and when songs

were played away from instead of toward observers;

training in distance estimation reduced but did not

eliminate errors (Alldredge et al. 2007b). When analyzing

songbird point-transect counts from a variety of habitats in

interior Alaska, Hoekman and Lindberg (2012) found

problematic deficits or surpluses of detections near the

observer and peaks in detections at intermediate distances

(30–60 m), particularly for thrushes (Turdidae); the

authors attributed these patterns as most likely due to

errors in distance estimation, undetected movement, or

both. Pooling observations into broad distance classes,

especially near the observer, reduced poor fit of observa-

tions to the detection function for some species but

resulted in high uncertainty in density estimates (Hoek-

man and Lindberg 2012).

In our field example, we selected cutoff points to reduce

heaping within distance bins, minimize bias near the

observer, and facilitate smooth detection functions (Buck-

land et al. 2001), and we recommend that studies

implementing our model also take similar steps to

maximize fit of the data to the detection function. We

further stress the importance of minimizing errors in

distance estimation by using laser rangefinders and
training programs for the array of species and habitats

encountered within each study area (Rosenstock et al.

2002). Although we did not measure such errors in our

field study, we recognize the importance of doing so

(Alldredge et al. 2007b, Simons et al. 2009), particularly if

detections are almost exclusively auditory, with no

assistance from visual cues. Maximum-likelihood methods

have been developed to use such auxiliary data (paired true

and estimated distances) to correct for bias in density

estimates that may result from additive or multiplicative

errors in distance estimation (Borchers et al. 2010); we

suggest that our model can be usefully extended to do so in

a Bayesian framework.

Assumption 5, which requires that the 2 components of

detection probability be independent, could be violated if

both were influenced by the same factor or if both were

functions of distance from the observer or time from the

start of the survey period. For example, adverse weather

may reduce not only the birds’ singing rates but also the

perceptibility of their songs to the observer. Concentrating

initial efforts on detecting individuals nearest to the

observer in an attempt to ensure that p(0) ~ 1 may result

in distant birds being more likely to be detected during the

later time intervals. Similarly, availability and perceptibility

may differ within a species depending on the type of cue

(visual or auditory) given, which may induce heterogeneity

in detection probability that is difficult to model jointly (cf.

Marques et al. 2007). For example, for more visible species

that provide infrequent auditory cues, individuals close to

the observer may be more likely to be detected during

initial periods, whereas those farther away, obscured by

vegetation, may be more likely than observed individuals

to be detected during later periods. For secretive species,

individuals close to the observer may alter their singing

rate, thereby affecting availability in relation to distance.

Other studies of multiple species across broad regions

(Handel et al. 2009, Matsuoka et al. 2012, Sólymos et al.

2013) have found that confounding of estimates of pa and

pd from removal models and distance sampling, respec-

tively, was minimal and that marginal estimation of these

parameters was therefore justified. Results from our field

example corroborate these findings, in that density

estimates for Golden-crowned Sparrow did not differ

when data were restricted to a significantly smaller radius

within which distance and time intervals were indepen-

dent. This assumption should be tested for each species

and, if necessary, observations should be truncated to an

appropriate radius, detection probability should be mod-

eled by type of cue (Marques et al. 2007), surveys should be

short in duration and include an acclimation period to

minimize effects on availability of individuals close to the

observer (Ralph et al. 1995), or the 2 components should

be estimated jointly (Burnham et al. 2004).

Single surveys of short duration, such as those employed

in our field study, will satisfy the sixth assumption of

population closure. Models that employ repeated visits to

points across a season for estimating abundance (e.g., Kéry

et al. 2005, Royle et al. 2007, Schmidt et al. 2013) will

generally violate this assumption because temporary

immigration or emigration can occur between visits. Thus,

the closure assumption will apply to the territory rather

than the bird, and such models will estimate the ‘‘super-
population’’ of home ranges that overlap the sampling

area, rather than the breeding densities estimated by our

model. The superpopulation of home ranges exposed to
sampling will depend on how mobile the birds are and may

vary with density, such that comparisons of estimates

should be evaluated carefully (Nichols et al. 2009).

Furthermore, if floaters (i.e. nonbreeding individuals)

occur in the population, they may move longer distances

and be present at multiple survey points across repeated

surveys, which could lead to overestimating population

size from double counting individuals and underestimating

detection probability (Oppel et al. 2014). For most

breeding migratory songbirds, the proportion of the

population present in an area increases in the spring as

birds begin establishing territories on the breeding

grounds, approaches an asymptote of 1 during incubation

and brood rearing, and then decreases as failed and

successful breeders depart for wintering grounds. If

surveys are not conducted during peak breeding, our

seventh and final assumption that the entire population is

present in an area during surveys could be violated, thus

biasing relative abundance estimates low. Multispecies
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surveys are vulnerable to violating this assumption because

timing of breeding varies among species of sympatrically

nesting birds. Birds breeding at higher latitudes and

elevations typically have a more abbreviated nesting season

(e.g., Slagsvold 1977, Spottiswoode and Møller 2004, Bears

et al. 2009), which generally results in greater breeding

synchrony both within and among species (Best 1981).

Although breeding seasons of many species within a

community may overlap considerably, those of others may

be almost mutually exclusive (Slagsvold 1977, Best 1981).

If the entire population of a given species is not present at

the time of a multispecies survey, we suggest limiting

inference from this model to those that are fully engaged in

breeding activities during the time of the survey or

exploring alternative models that allow explicit estimation

of pp (e.g., repeat surveys; Nichols et al. 2009).

Practical Application
Methods to adjust raw counts for incomplete detection of

individuals rely on assumptions and, thus, still result in

indices of population size, though the adjusted estimates

should approximate the true population size of interest

better than the raw counts would alone (Johnson 2008).

Such methods to estimate detection probability may

increase costs of monitoring programs (e.g., by requiring

repeated surveys or multiple observers) or have unrealistic

assumptions, and complex models such as the one

presented here may be prohibitive for managers to

implement without consultation with a statistician or
quantitative ecologist. The benefit, then, of using our

model may depend on study objectives and available

funding.

Studies focused on examining geographic or temporal

variation in population size, mapping species distributions,

or exploring mechanisms that underlie imperfect detection
of animals will benefit from modeling detection probability

using spatially or temporally varying covariates. For

example, our model for Golden-crowned Sparrows in

southwest Alaska indicated that abundance was positively

associated with tall shrubs and deciduous forest at

relatively low elevations in upland areas, which is

consistent with their predominant distribution at or above

tree line in forest–tundra ecotones elsewhere in the state

(Kessel and Gibson 1978, Kessel 1989, Petersen et al.

1991). If we had not accounted for either component of

detection probability, our model suggests that densities

would have been underestimated by an average of 63% and

that predicted distributions would have been biased in

relation to habitat type because perceptibility decreased

with increasing dense cover, with implications for species-

specific habitat management. Similarly, not accounting for

significant temporal effects on singing rates would have

resulted in spatially biased estimates of density because

sampling order was not random with respect to time (i.e.

survey order was geographically clustered for efficiency in

time and cost). Furthermore, the model presented here can

provide unbiased, reasonable estimates of model compo-

nents for observation (i.e. detection probability) and

process (i.e. abundance) using data collected by a single

observer during a single survey, thus reducing survey cost

and effort and better approximating a ‘‘snapshot’’ of

abundance in space and time. The combined time-of-

detection, distance-sampling method also shares these

characteristics but requires tracking individual birds

throughout the survey period (Alldredge et al. 2007a),

which may not be feasible in areas with high bird densities

or for multispecies surveys.

Studies focused on uncommon species or that violate

model assumptions may not be appropriate for use with

our model. Among some other species in our study,

models that had a marginal number of detections (i.e. ,75;

Buckland et al. 2001) converged and produced reasonable

estimates of detection probability and density but, upon

closer examination, revealed potential problems such as

non-normal posterior distributions and possibly spurious

covariate relationships. Additionally, like all model-based

estimates, unbiased inference is dependent on adherence

to model assumptions, which may be violated under some
sampling designs or for certain species. In these cases,

unadjusted indices of abundance may produce similar

conclusions and management decisions if objectives

require only estimates pooled across space and time and

population trends are strong (Thompson and La Sorte

2008), or if variance in detection probability is substantially

smaller than the variance in population size to be detected

and detection probability and population size are inde-

pendent (Johnson 2008).

Our model can improve understanding of avian

populations by (1) reducing bias associated with imperfect

detection probability and spatial variability that may lead

to inaccurate inferences regarding population size or

distribution and (2) increasing our understanding of the

processes associated with abundance and detection

probability through examination of relevant covariates. If

assumptions can be met and sampling design is appropri-

ate, our model can be used to produce predictive

landscape-level maps of distribution and abundance that

can be useful for both management and conservation.

Thus, broad-scale programs to model abundance of birds

should not only use rigorous study design and implemen-

tation to minimize bias in population-level estimates, but

also include methods to estimate survey-specific detection

probabilities if objectives include point- or time-specific

inferences.

In sum, we propose a novel extension to 2 existing

models to estimate detection probability and abundance

from spatially replicated surveys. Minimal additional effort

by an observer during a single survey can provide a wealth
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of additional information regarding the detection process

and mechanisms underlying species abundance. Our

model can assist land managers, hindered by logistical

and financial constraints on research and monitoring, in

obtaining unbiased estimates of population density while

minimizing costs. Furthermore, implementation of our

model in a Bayesian framework greatly increases flexibility

over maximum-likelihood methods (e.g., by allowing

random effects at multiple hierarchical levels) while

accounting for important but often overlooked sources

of heterogeneity in detection probability.
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