The persistent problem of lead poisoning in birds from ammunition and fishing tackle

Authors: Susan M. Haig, Jesse D'Elia, Collin Eagles-Smith, Jeanne M. Fair, Jennifer Gervais, et. al.

Source: The Condor, 116(3) : 408-428
Published By: American Ornithological Society
URL: https://doi.org/10.1650/CONDOR-14-36.1
REVIEW

The persistent problem of lead poisoning in birds from ammunition and fishing tackle

Susan M. Haig,1* Jesse D’Elia,2 Collin Eagles-Smith,1 Jeanne M. Fair,3 Jennifer Gervais,4 Garth Herring,1 James W. Rivers,5 and John H. Schulz5

1 U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon, USA
2 U.S. Fish and Wildlife Service, Portland, Oregon, USA
3 Los Alamos National Laboratory, Environmental Stewardship, Los Alamos, New Mexico, USA
4 Oregon Wildlife Institute and Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA
5 Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
6 Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, Missouri, USA
* Corresponding author: susan_haig@usgs.gov

Submitted February 28, 2014; Accepted April 21, 2014; Published July 9, 2014

ABSTRACT

Lead (Pb) is a metabolic poison that can negatively influence biological processes, leading to illness and mortality across a large spectrum of North American avifauna (~120 species) and other organisms. Pb poisoning can result from numerous sources, including ingestion of bullet fragments and shot pellets left in animal carcasses, spent ammunition left in the field, lost fishing tackle, Pb-based paints, large-scale mining, and Pb smelting activities. Although Pb shot has been banned for waterfowl hunting in the United States (since 1991) and Canada (since 1999), Pb exposure remains a problem for many avian species. Despite a large body of scientific literature on exposure to Pb and its toxicological effects on birds, controversy still exists regarding its impacts at a population level. We explore these issues and highlight areas in need of investigation: (1) variation in sensitivity to Pb exposure among bird species; (2) spatial extent and sources of Pb contamination in habitats in relation to bird exposure in those same locations; and (3) interactions between avian Pb exposure and other landscape-level stressors that synergistically affect bird demography. We explore multiple paths taken to reduce Pb exposure in birds that (1) recognize common ground among a range of affected interests; (2) have been applied at local to national scales; and (3) engage governmental agencies, interest groups, and professional societies to communicate the impacts of Pb ammunition and fishing tackle, and to describe approaches for reducing their availability to birds. As they have in previous times, users of fish and wildlife will play a key role in resolving the Pb poisoning issue.

Keywords: birds, copper bullets, endangered species, fishing jigs, fishing sinkers, fishing tackle, lead, lead ammunition, lead poisoning

PROBLEMA PERSISTENTE DE ENVENENAMIENTO POR PLOMO EN AVES DEBIDO A MUNICIONES Y APAREJOS DE PESCA

RESUMEN

El plomo (Pb) es un veneno metabólico que puede influenciar negativamente los procesos biológicos produciendo enfermedades y la muerte de un gran espectro de aves de América del Norte (~120 especies) y de otros organismos. El envenenamiento por Pb puede provenir de múltiples fuentes, incluyendo la ingestión de fragmentos de balas y perdigones que quedan en los cadáveres de los animales, municiones usadas y dejadas en el campo, aparejos de pesca abandonados, pinturas a base de Pb, minería a gran escala y actividades de fundición de Pb. Los disparos que contienen Pb han sido prohibidos para la caza de aves acuáticas en Estados Unidos (desde 1991) y Canadá (desde 1999). Sin embargo, la exposición no intencional de muchas aves al Pb continua. A pesar de que existe una enorme cantidad de literatura científica sobre la exposición y los efectos toxicológicos del Pb en las aves, existe aún controversia sobre los impactos a nivel poblacional. Evaluamos estos aspectos y subrayamos las áreas que necesitan investigación: (1) variación en la sensibilidad a la exposición al Pb entre las especies de aves; (2) extensión espacial y fuentes de contaminación de Pb en los hábitats en relación con la exposición de las aves en esas mismas localidades; e (3) interacciones entre la exposición de las aves al Pb y otras fuentes de estrés a escala de paisaje que afectan de modo sinérgico la demografía de las aves. Exploramos múltiples iniciativas que apuntan a la reducción de la exposición de las aves al Pb que: (1) reconocen aspectos comunes en un rango de intereses afectados; (2) han sido aplicadas a la escala local y nacional; e (3) involucran agencias de gobierno, grupos de interés y sociedades de profesionales para comunicar los impactos de las municiones de Pb y de los aparejos de pesca y para describir los enfoques para reducir su disponibilidad para las aves. Como ha ocurrido en otras ocasiones, los usuarios consuntivos de los peces y de la vida silvestre jugarán un rol muy importante para resolver el tema del envenenamiento por Pb.
INTRODUCTION

Lead (Pb) has long been recognized as an ecological and human health hazard because exposure to this cumulative metabolic poison has negative consequences for all organisms studied (DeMichele 1984, Scheuhammer and Norris 1995, Hernberg 2000, Goddard et al. 2008, Watson et al. 2009, Centers for Disease Control 2013, Chen 2013). Although Pb occurs naturally as a trace element of geological materials (Figure 1), human activities have greatly increased the distribution and abundance of Pb in the environment because it is used widely in the production of batteries, pigments and dyes, caulks, and metal alloys, as well as in aviation fuel for small piston-engine aircraft (Rattner et al. 2008, Carr et al. 2011). The physical properties of Pb (e.g., high density, low melting point, malleability, corrosion resistance), as well as its low cost compared with alternative metals, have made it the primary metal used in the manufacturing of ammunition and fishing sinkers (Goddard et al. 2008, Thomas 2013).

Although wildlife exposure to Pb has been linked to a variety of anthropogenic sources, such as mining (Blus et al. 1999, Henny 2003) and legacy Pb-based paint (Finkelstein et al. 2003), a great deal of attention is currently focused on Pb ammunition and fishing tackle because of their widespread recreational and subsistence use in wildlife habitats (Rattner et al. 2008, Goddard et al. 2008). Pb ammunition can also be a threat to human health, as evidenced by OSHA regulations protecting workers at shooting ranges (e.g., https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=NEWS_RELEASES&p_id=22524). These concerns are particularly applicable to birds because their mobility and diverse foraging strategies contribute to potential exposure and subsequent toxicological impairment in a broad array of species.

Birds are sensitive to Pb exposure, leading to apparent sublethal or lethal toxic responses, and exposure has been documented in >120 species (reviewed by Scheuhammer and Norris 1995, Fisher et al. 2006, Goddard et al. 2008, Pain et al. 2009, Tranel and Kimmel 2009; Figure 2). However, the extent of the problem is difficult to quantify because the rapid onset of toxicity results in low detectability in species that are not intensively monitored and tested. Thus, the magnitude of the issue and the breadth of its conservation and health implications remain controversial (Bellinger et al. 2013).

This review was initiated to summarize scientific information pertaining to the conservation threat of Pb ammunition and fishing tackle in birds. Our goal is to point out the broad spectrum of options that are available to decision-makers seeking to reduce Pb poisoning in birds. These approaches are not mutually exclusive, and it is likely that the combination of several would most effectively reduce or eliminate Pb exposure in birds from ammunition and fishing tackle. For example, in order to
properly address particular situations, decision-makers may need to know factors such as (1) population effects across the continuum of potentially affected species; (2) identification of species directly and indirectly affected; (3) the degree to which other sources of Pb in the environment may be contributing to poisoning; and (4) the potential impact on human health.

We begin by evaluating the physiological effects of Pb in birds and critically examining the evidence of avian injury and mortality from spent ammunition and fishing tackle. We then review regulatory and voluntary approaches to reduce avian exposure to Pb and outline future directions that could minimize the magnitude of Pb impacts on avian populations. Although we acknowledge that this is a global issue and cite examples from around the world (Mateo 2009, Newth et al. 2012, United Nations Environment Programme 2013), our review is primarily focused on North American birds.

Pb in the Environment and Its Significance for Avian Conservation

The anthropogenic Pb cycle. Pb is widely distributed across the atmosphere, lithosphere, hydrosphere, and biosphere (Figure 1). Beginning in Roman times, ~95% of Pb in the environment resulted from human activities, including mining, smelting, coal combustion, battery processing, waste incineration, and fuel additives (Alfonso et al. 2001, Goddard et al. 2008). Modeled loss estimates from primary Pb emission vectors suggest that ~48% of all Pb newly brought into use is ultimately lost to the environment (Mao et al. 2009). The second-largest loss, accounting for 21% (670,000 metric tons Pb yr⁻¹) of the annual environmental Pb deficit, is Pb dissipated following use (Mao et al. 2009). In the United States alone, >69,000 metric tons of Pb were used in the production of ammunition in 1 yr (U.S. Geological Survey 2013). Among the initial 15 countries of the European Union, ~34,600 metric tons of Pb shot and ~4,000 metric tons of Pb bullets and pellets are used per year (European Commission 2004). Annual estimates of Pb fishing weights sold amount to 3,977 metric tons in the United States, up to 559 metric tons in Canada, and 2,000–6,000 metric tons in Europe (Schuelhammer et al. 2003, European Commission 2004, United Nations Environment Programme 2011). Radomski et al. (2006) estimated 16 tons of Pb tackle in 5 surveyed lakes over a 20-yr period, or an average ~320 pounds Pb lake⁻¹ yr⁻¹.

Although these estimates provide context for the raw distribution of Pb into ammunition and fishing tackle, it is important to note that they are clearly unrepresentative of the amount of Pb that is distributed and available for avian exposure (Figure 1). To appropriately estimate potential exposure coefficients, data are needed that quantify (1) the proportion of purchased ammunition and fishing tackle that is actually used; (2) the proportion of use that occurs in outdoor environments where birds can be exposed; (3) the proportion of ammunition and fishing tackle used in outdoor environments that is left in such a form or location that avian exposure is possible (i.e., bullet fragments left in carcasses); and (4) the probability that a bird will be exposed to any available Pb-based ammunition or fishing tackle (Figure 3). Although ample evidence shows considerable avian Pb exposure from ammunition and fishing tackle, we need to address these data gaps to generate ecosystem- or regional-scale estimates of potential avian Pb exposure. A distinct understanding of primary exposure pathways is important for managing scenarios where avian risk to Pb exposure is high.

Pathways of avian exposure. Among toxicologically significant sources (e.g., Pb-based paint, mining, smelters, and combustion residue of leaded gasoline; Blus et al. 1999, Church et al. 2006, Beyer et al. 2013), spent ammunition and lost fishing tackle are the primary exposure pathways for birds in terrestrial and aquatic systems (Kendall et al. 1996, Liu et al. 2008, Rattner et al.
2008), and these are pathways that can be controlled and managed.

The highest human-caused Pb concentrations associated with ammunition are found in and near shooting ranges (United Nations Environment Programme 2013), where patches of Pb shot may attain concentrations of 5–17 kg Pb m$^{-2}$ (Rattner et al. 2008). However, it is important to note that these values are localized extremes, and there is considerable variability in the soil Pb content in shooting ranges (Bennett et al. 2007). Nevertheless, many grit-seeking birds pick up Pb fragments at or near shooting ranges.

Conversely, traditional hunting areas may be more representative of the potential Pb exposure risk to wild birds. Although Pb densities are substantially lower than in target ranges (Ferrandis et al. 2008), the deposition of Pb pellets from historical waterfowl and contemporary Mourning Dove (Zenaida macroura) hunting provide some of the strongest examples of the amount of Pb that can be associated with hunting activities within a confined area (Box 1). During the period of Pb use for hunting migratory waterfowl, Bellrose (1959) estimated densities as high as 125,970 pellets ha$^{-1}$; more recently, Pain (1991) reported pellet densities of nearly 2 million pellets ha$^{-1}$. In managed upland dove-hunting fields where Pb shot is legal, shot densities range from tens of thousands to hundreds of thousands of pellets per hectare (Box 1 and Figure 4). However, there are differences in how long Pb pellets deposited on the landscape are available to birds, particularly between wetland and upland habitats. Flint and Schamber (2010) estimated that Pb pellets in the sediment of wetlands would be available to most species of waterfowl for ≥25 yr. If so, the risk of exposure to Pb pellets from past hunting for most waterfowl species in North America should be nearly eliminated, given that it has been 14 and 22 yr since Pb shot has been banned in Canada and the United States, respectively. However, legacy Pb exposure in some waterfowl species, such as

swans, is still a concern because of the greater depths at which they forage within sediments (Smith et al. 2009). Furthermore, drying of seasonal wetlands can expose pellets that upland species (e.g., doves and pheasants) ingest.

More difficult to estimate is bullet fragment density from big-game hunting, in which Pb is associated with offal (i.e. gut piles) and carcasses. Although the densities of Pb fragments are necessarily lower than those associated with shot, they are also more localized and associated with an attractant (animal carcasses or offal) that could substantially increase the probability of avian exposure.

The density of Pb fishing tackle in aquatic environments is highly variable yet can have significant impacts on aquatic species such as loons and swans. Duerr (1999) estimated 0.01 and 0.47 sinkers m$^{-2}$ in areas of low and high fishing pressure in the United States, respectively. In the United Kingdom, estimates have ranged between 0.84 and 16.3 sinkers m$^{-2}$ along the Thames River (Sears 1988) and between 24 and 190 sinkers m$^{-2}$ in shoreline areas in Wales (Cryer et al. 1987). It is important to note that these large estimates of lost-tackle densities are from locations with exceptionally high fishing pressure and may not be representative of tackle densities in other locations. To understand subsequent risk, it is crucial to understand relative waterbird use of the high-risk zone. For example, Radomski et al. (2006) utilized creel surveys of walleye fishermen to evaluate rates of tackle loss across 5 Minnesota lakes and estimated that Pb tackle densities in 1 of these lakes was <0.002 sinkers m$^{-2}$. Across the 5 lakes, whose combined area was 267,933 ha, cumulative total estimated Pb-tackle losses were found to be >100,000 pieces, or ~1 metric ton year$^{-1}$ of the study (Radomski et al. 2006). It is unclear what waterbird exposure rates might be at these Minnesota lakes; however, Pokras et al. (2009) found that 118 of 522 (23%) Common Loon (Gavia immer) carcasses from 6 New England states contained ingested Pb objects, primarily sinkers and jigs, as

![FIGURE 3. The remains of Pb and copper bullets fired into a water barrel from a .30-06 rifle. (A) Unfired Pb core bullet (with a copper alloy jacket) next to remains from a fired bullet of similar type. Tiny bullet fragments provide a great deal of surface area allowing for increased absorption of Pb once ingested by scavengers. (B) Unfired copper bullet next to the remains from a fired bullet of similar type. Photos courtesy of Clinton Epps (C. Epps and D. Sanchez personal communication).](image-url)
well as ammunition. This suggests that although overall densities may be low across entire lakes, Pb tackle may be concentrating in habitat sectors that increase exposure risk, assuming that densities of tackle in New England and Minnesota lakes are comparable.

Direct exposure. Direct exposure occurs when birds mistake Pb objects for seeds or grit and purposefully ingest them, often in areas of heavy hunting and fishing pressure or at established shooting ranges (Boxes 1 and 2). In terrestrial areas, this pathway to Pb poisoning is most relevant to seed-eating birds that obtain grit for muscular grinding of seeds in the gizzard (Fisher et al. 2006, Rattner et al. 2008). Some waterbirds also consume Pb objects for use in the gizzard and become poisoned through the same route (Smith et al. 2009) or in combination with Pb that they consume when diving (Pokras et al. 2009).

Indirect exposure. Indirect exposure to Pb occurs when predators and scavengers incidentally ingest Pb...
when consuming the flesh of an animal that has been shot with Pb ammunition or that ingested Pb sinkers or a soil-dwelling organism containing high Pb levels (Boxes 1, 2, and 3; Figure 4). Scavenging raptors such as eagles, vultures, and condors are typically influenced by this route of Pb poisoning (Box 2; Figures 5 and 6). They make extensive use of offal from harvested animals and from carcasses of animals that are killed for recreation (e.g., prairie dogs \(\text{Cynomys spp.} \)) or for animal control purposes or that are shot by hunters but cannot be retrieved (Fisher et al. 2006, Kelly et al. 2011, Bedrosian et al. 2012, Harmata and Restani 2013). Importantly, Pb bullets expand or “mushroom” and then fragment, dissipating the bullet’s energy. As a result, an average of 235 (range: 15–621) and 170 (range: 85–521) Pb fragments remain in the eviscerated carcass and viscera, respectively (Hunt et al. 2007, 2009; Knott et al. 2010; Figures 5 and 6). This fragmentation increases the likelihood that multiple individuals can be exposed to Pb from a single carcass or gut pile. In addition, the small size and increased surface area of the fragments that stem from spent ammunition also increase the uptake of Pb into the bloodstream (Hunt et al. 2009). Although these exposure sources may be highly localized, the magnitude of their negative effects is increased when they are used as food resources by widely dispersing, highly social scavengers (e.g., vultures and condors). Finally, indirect exposure can also occur in ground-feeding species that rely heavily on earthworms as prey (Scheuhammer et al. 1999, 2003), such as the American Robin \(\text{(Turdus migratorius; Beyer et al. 2004, 2013)} \) and American Woodcock \(\text{(Scolopax minor; Scheuhammer et al. 1999, 2003)} \).

Lead impact on avian physiology. Pb ingested from Pb pellets or bullet fragments is absorbed into the circulatory system, aided by the grinding action in the gizzard; thus, diet can affect Pb uptake rates (Marn et al. 1988, Locke and Thomas 1996, Vyas et al. 2001). Once Pb is absorbed into the body, its toxicological effects are diverse. However, as is true with nearly all contaminants, interspecific variation in tolerance to Pb is considerable, which makes it difficult to assess risk solely on the basis of blood Pb levels. For example, the California Condor \(\text{(Gymnogyps californianus)} \) experiences significant mortality as a result of Pb ingestion (Finkelstein et al. 2012). Conversely, Carpenter et al. (2003) found that Turkey Vultures \(\text{(Cathartes aura)} \) repeatedly dosed with large numbers of Pb shot and constant redosing survived much longer than other species of avian scavengers, such as Bald Eagles \(\text{(Haliaeetus leucocephalus)} \), that received similar doses of Pb (Hoffman et al. 1981). These studies suggest that complex physiological processes regulate exposure and toxicity risk to Pb and vary even between close relatives. Thus, factors beyond the gross number of Pb pellets or bullet fragments ingested are important in understanding how environmental exposure is linked to toxicological responses.

At the organismal level, Pb poisoning can modify the structure and function of kidney, bone, the central nervous system, and the hematopoietic system, leading to adverse biochemical, histopathological, neurological, and reproductive effects (Boggess 1977, Nriagu 1978, DeMichele 1984, Eisler 1988, Rattner et al. 2008, Franson and Pain 2011). These effects can be observed at a very young age, as shown by studies of nestling Western Bluebirds \(\text{(Sialia mexicana)} \) and Japanese Quail \(\text{(Coturnix japonica; Fair and Myers 2002, Fair and Ricklefs 2002)} \). The range of physiological effects is mirrored by the range of potential responses to exposure. Acute poisoning may occur rapidly, without characteristic signs such as emaciation or lack of coordination (Locke and Thomas 1996). Chronic exposure results in lethargy and anorexia, breast-muscle atrophy, loss of strength and coordination, drooping wings, and changes in vocalization (see Figure 6).

Modes of action. Neurological impacts of Pb on animals are highly contingent on the chemical form of Pb, dose, and exposure duration, as well as the age, sex, and health of the bird (Müller et al. 2008). In the avian body, Pb mimics calcium and substitutes for it in many fundamental cellular processes, including nervous-system function (Simons 1993, Flora et al. 2006). For example, Pb can activate protein kinase C, which plays a critical role in the vertebrate nervous system by controlling the function of other proteins (Hwang et al. 2002). Pb poisoning also leads to anemia by reducing heme synthesis and decreasing the life span of erythrocytes (Eisler 1988, Goyer 1996).

Pb affects the nervous system by changing calcium homeostasis and inhibiting cholinergic nerve cells, thus interfering with signal transmission across nerve synapses and leading to behavioral changes (Sanders et al. 2009). The cerebellum is the primary target for Pb toxicity in the brain and is the major determinant for behavioral changes (Alfano and Petit 1981). Experimental studies with environmentally relevant Pb doses in wild nestling Herring Gulls \(\text{(Larus argentatus)} \) demonstrated that Pb impairment can result in decreased health, less vigorous food-acquisition behaviors, poor coordination, and decreased survival (Burger and Gochfeld 1994).

Pb also impairs the enzymes \(\delta \)-aminolevulinic acid dehydratase (\(\delta \)-ALAD) and ferrochelatase, ultimately interfering with heme synthesis, and resulting in anemia if exposure is high enough (Hoffman et al. 1985). Northern Bobwhites \(\text{(Colinus virginianus)} \) dosed with a single no. 9 Pb shot (i.e. 2 mm in diameter) exhibited only 8% of normal ALAD activity 8 wk after dosing (S. D. Holladay et al. 2012). The same dose regime resulted in blood Pb levels >80 times higher than background in captive Rock Pigeons \(\text{(Columba livia; J. P. Holladay et al. 2012)} \). In wild birds, \(\delta \)-ALAD and intermediary metabolites such as...
BOX 2. Demographic Effects of Pb Ingestion on California Condors and Other Avian Scavengers

California Condors were nearly driven to extinction in the 1980s, and the cause of their decline was unknown at that time (Snyder and Snyder 2000, Walters et al. 2010, D’Elia and Haig 2013). Substantial evidence now points to ingestion of Pb ammunition in carcasses as the primary factor preventing California Condors from achieving self-sustaining populations (Church et al. 2006, Walters et al. 2010, Finkelstein et al. 2012). A related study of Pb isotopes in Andean Condor (Vultur gryphus) feathers in northwest Patagonia suggests that they are also being exposed to Pb from ammunition (Lambertucci et al. 2011). Other avian scavengers that share one or more of the following traits and occur in regions where Pb is available in gut piles or dead animals may also be at elevated risk of adverse effects.

Obligate scavenger. Obligate scavengers represent an extreme specialization in the animal kingdom, being completely reliant on other agents to kill their food. These species are limited to the condors and vultures (Ruxton and Houston 2004). Their inability to procure live prey places them at greater risk of exposure to Pb shot from animals left in the field or offal from harvested animals.

Large size. Large avian scavengers search out food in large quantities to meet their energy requirements (Ruxton and Houston 2004). This preference for larger food items may increase their exposure to Pb in areas frequented by big-game hunters. Their large size also means that they consume a relatively large quantity of meat at each carcass, increasing their risk of exposure to any contaminants that may be disproportionately distributed throughout the carcass.

Life-history pattern of low reproduction and high annual survival. Low reproductive output of 1 or 2 offspring every 1 or 2 yr, an extended subadult period of several years prior to recruitment into the breeding population, and a long life span of several decades or more define a life-history pattern that can be sensitive to small changes in adult survival rates (Mertz 1971, Meretsky et al. 2000). Long-lived species are also at greater risk of multiple exposures and, thus, at greater risk of sublethal effects (Hunt 2012).

Social foraging. Species that tend to roost and feed communally as an adaptation for finding resources that are large and ephemeral are at greater risk than species whose individuals roost and forage alone (Dermody et al. 2011). Social behavior such as communal roosting and sharing of food resources may increase the risk that a single contaminated carcass can poison a large number of individuals in the same feeding.

Physiological factors. A number of intrinsic factors influence species’ susceptibility to Pb poisoning, including retention of Pb after ingestion versus regurgitation (Stendell 1980), nutritional status and diet, and chemical environment in the lumen (Pattee et al. 2006). Species that fail to regurgitate ingested Pb fragments are likely to suffer greater exposure.

Multiple lines of evidence point to Pb ammunition as the primary source of Pb poisoning in avian scavengers. These include the spatiotemporal relationship of Pb exposures to hunting areas and season, Pb isotope ratios in feathers and blood (Scheuhammer and Templeton 1998, Church et al. 2006, Lambertucci et al. 2011), elevated copper concentrations in the kidneys of Pb-exposed eagles as an indicator of FIGURE 5. (A) Golden Eagle (Aquila chrysaetos) chick with a Belding’s ground squirrel (Spermophilis beldingini) food source (Upper Malheur River, Harney County, May 2013). Photo courtesy of Eric Forsman. (B) Radiograph of Pb fragments in Belding’s ground squirrels found dead in a field. Photo courtesy of Jeff Cooney.
the presence of copper-jacketed Pb bullets (Cruz-Martinez et al. 2012), radiographs of Pb-exposed scavenger gastrointestinal tracts (e.g., Helander et al. 2009; Figure 6) and food items (Knopper et al. 2006, Hunt et al. 2009; Figure 5), and toxicological studies combined with direct field observations and necropsies (e.g., Finkelstein et al. 2012). Taken together, and without a reasonable alternative hypothesis, these studies collectively provide a compelling indication that ammunition is the predominant source of Pb poisoning in scavenging birds.

The association in time and space between elevated Pb levels or Pb exposure rates in avian scavengers and big-game hunting has been observed in multiple species across diverse regions of the world: Bald and Golden eagles in the upper midwestern United States (Kramer and Redig 1997, Strom et al. 2009, Cruz-Martinez et al. 2012); Bald Eagles and Common Ravens (Corvus corax) in the Rocky Mountains (Craighead and Bedrosian 2008, Bedrosian et al. 2012); Golden Eagles, Turkey Vultures, and California Condors in southern California (Hall et al. 2007, Kelly and Johnson 2011, Kelly et al. 2011); California Condors in Arizona and Utah (Hunt et al. 2007); and Steller’s Sea Eagles (Haliaeetus pelagicus) and White-tailed Sea Eagles (H. albicilla) in Hokkaido, Japan (Saito 2009). These findings are consistent with the hypothesis that scavengers are consuming Pb in carcasses from hunting.

Not all studies have found a significant relationship between Pb concentrations or Pb exposure rates and big-game hunting seasons (Martina et al. 2008, Stauber et al. 2010) and, even where significant correlations exist, many studies have found that Pb exposures are not strictly limited to big-game hunting seasons. Furthermore, Pb pellets and .22 bullets not associated with big-game hunting have been recovered in the digestive tracts of California Condors (Rideout et al. 2012), Bald and Golden eagles (Cruz-Martinez et al. 2012), and sea eagles (Helander et al. 2009), and in the pellets of Egyptian Vultures (Neophron percnopterus; Donázar et al. 2002).

The fact that ammunition can be delivered via multiple sources to avian scavengers means that in many areas, effective treatment of this threat will require more than simply eliminating Pb ammunition use by big-game hunters. However, these hunters remain the key to survival for most scavengers in the world (Mateo-Tomás and Olea 2010). They are now the top predator in modern ecosystems, and the remnants of hunting are a more important wildlife food source now than at any other time in history.

FIGURE 6. Pb poisoning in Bald Eagles following consumption of carcasses containing Pb bullet fragments. (A) Adult showing muscle degeneration, unable to stand, open-mouth breathing, weakness, and wing droop. (B) X-rays indicating location of Pb bullet fragments in coyote. (C) Pb-poisoned Bald Eagles collected in one Iowa location over 1 yr by Project SOAR. Photo courtesy of Project SOAR.
protoporphyrin in blood are used as biomarkers of exposure (Locke and Thomas 1996). Time for δ-ALAD recovery to normal levels is dose dependent, organ specific, and usually directly correlated with blood Pb levels.

Population-level effects of Pb. The potential effects of Pb poisoning on individual birds are clearly established. Far less clear are the population-level consequences of current rates of Pb exposure in many species. The best examples are from waterfowl, in which losses to Pb poisoning were estimated to be 2–3% overall, with an estimated 4% annual loss in Mallards (Anas platyrhynchos; Sanderson and Bellrose 1986). Similarly, Grand et al. (1998) estimated that survival rates of female Spectacled Eiders (Somateria fischeri) exposed to Pb shot from ingestion were 34% lower than those of unexposed females (77%) and suggested that Pb exposure may have been preventing local population recovery. California Condor populations appear to be at substantial risk from Pb exposure (e.g., Cade 2007, Walters et al. 2010, Finkelstein et al. 2012). Pb sinks appear to be a regulatory factor for Common Loons in New Hampshire, where 49% of known mortalities are attributed to Pb poisoning from fishing tackle (Vogel 2013).

Significance of Pb exposure to avian conservation. Given proof that elevated Pb exposure can greatly influence the health of individual birds and can result in mortality, the environmental distribution of Pb from ammunition and fishing tackle could be an important factor influencing the conservation of avian communities. Here, we discuss (1) the apparent contradiction in results of some studies regarding avian exposure and levels of impairment caused by different contaminant concentrations; (2) unease with the implicit assumption of many published studies that Pb is the ultimate source of mortality for birds found dead with elevated Pb concentrations; and (3) lack of clarity over the relative threat of Pb to birds in comparison to other major impacts such as invasive species, habitat loss, human disturbance, domestic cats, and collisions with vehicles, power transmission lines, and buildings.

We have already presented several examples of increases in avian Pb exposure in association with ammunition and tackle. Similarly, we have outlined many instances of toxicity associated with environmental and lab-derived exposure to Pb. However, the results of other studies add a layer of ambiguity to this topic that is important to acknowledge. For example, even at relatively similar Pb exposure levels, studies have shown clear effects on blood chemistry (Kerr et al. 2010, Carpenter et al. 2003, Hoffman et al. 1981, Pattee et al. 2006), egg production (Edens and Garlich 1983), behavior (Burger and Gochfeld 1994, 2004), and survival (Schulz et al. 2006, Grand et al. 1999, Pattee et al. 2006, Rideout et al. 2012), whereas others demonstrated limited responses to many of the same endpoints (McBride et al. 2004, Schulz et al. 2007, Ferrandis et al. 2008). Although differences in methodology likely played some role, a more plausible explanation is intrinsic interindividual and interspecific variability in sensitivity to Pb. This source of variation complicates overall estimates of Pb risk to avian communities and represents a key data gap in Pb ecotoxicology.

Acute toxicity leading to mortality can often be determined from physical or behavioral cues, especially if tissues are analyzed for Pb content postmortem. But it is uncommon to encounter Pb-intoxicated birds for which this information can be obtained, which complicates attempts to estimate actual mortality due to Pb. As a result, numerous studies have reported Pb levels in tissues from dead birds, making the implicit assumption that mortality was a result of Pb exposure in those birds with elevated concentrations (Helander et al. 2009, Hernández and Margalida 2009, Kentner et al. 2001, Wayland and Bollinger 1999). In some cases, mortality is likely due to Pb poisoning, but as we noted above, the tremendous range in sensitivities among individuals and species can make the use of tissue thresholds to infer cause of death problematic. Thus, the proportion of birds found dead with elevated Pb concentrations is often a poor and biased (under or over) estimator of mortality rates.

The cumulative body of scientific evidence unequivocally suggests that Pb exposure from ammunition and fishing tackle is directly responsible for numerous bird deaths each year and is clearly a serious threat to the population trajectory of the endangered California Condor (Franson et al. 2003, Walters et al. 2010, Finkelstein et al. 2012; Box 2). However, for many bird species, the impact of Pb exposure is much less clear given the assortment of other anthropogenic hazards and conservation threats they face. For example, >1 billion birds year⁻¹ are estimated to be killed by domestic cats in the United States (Loss et al. 2013), and millions of bird mortalities each year result from collisions with power lines, fixed objects, and vehicles (Loss et al. 2014). In addition, habitat loss and intensified land use can have an immeasurable impact on the conservation status of many bird species at global scales. However, addressing the Pb issue is tractable because it entails a relatively simple solution: replacing Pb-based ammunition and fishing tackle with non-Pb alternatives.

Proponents of this solution contend that alternatives to Pb are readily available and of comparable cost and that the costs are expected to decrease with increases in demand that accompany improved efficiencies in ballistics (Thomas 2013). Conversely, supporters of continued Pb use in ammunition and fishing tackle argue that the increased costs of non-Pb alternatives require robust and clear scientific evidence of impacts before any changes are made. However, these competing ideas are not mutually exclusive. Progress could be made in reasonably short
order to reduce avian Pb exposure and increase scientific knowledge of Pb’s impacts through an integrated plan of voluntary Pb replacement programs coupled with large-scale research efforts to evaluate the effects of Pb management on avian Pb exposure.

Priority Research Directions

Results from countless studies have concluded that Pb continues to be introduced into the environment through Pb ammunition and fishing tackle, and that these forms of Pb are being ingested by a wide diversity of avian taxa, causing illness and mortality. There are additional areas of investigation that might identify key areas to target Pb reduction and could inform priorities for broader Pb-reduction programs in the future. Thus, we identify four future research questions to improve our understanding of the threat posed by Pb poisoning: (1) What factors are responsible for interspecific variation in sensitivity to Pb exposure? (2) What is the spatial extent of Pb contamination in habitats, and how is this linked to bird exposure in those same locations? (3) How does the interaction of Pb exposure and landscape-level or environmental stressors affect birds at the population level? And (4) what is the influence of Pb on key demographic parameters (e.g., survival) in relation to other causes of morbidity and mortality?

Variation in Pb sensitivity. Numerous studies have evaluated toxicological responses of birds to Pb exposure (Franson and Pain 2011), but a consistent, ecologically meaningful, and standardized approach does not currently exist. This makes it challenging to prioritize how best to manage for Pb risk and makes comparative assessments across multiple taxa difficult. Thus, an important step in reducing Pb exposure in birds is the development of a standardized vulnerability assessment that considers life-history traits, exposure likelihoods, and sensitivity to the toxic effects of Pb. Of note, the concept of differential sensitivity among avian species that allows for thresholds that vary among taxa is well established for a range of contaminants (e.g., organochlorine pesticides, polychlorinated biphenyls, mercury, and selenium; Eisler 1986, Heinz et al. 2009, Blus 2011, Ohlendorf and Heinz 2011, and many others). For example, Buekers et al. (2009) summarized results of 13 repeated-dosage studies of Pb for 12 avian species. Including a range of endpoints in their analysis, they found a 50-fold range in estimates of no-observed-effect concentrations. Thus, similar Pb exposure levels will likely elicit a wide range of effects across a gradient of species. Unfortunately, few studies encompass the range of primary exposure mechanisms with similar exposure periods under standardized conditions. These estimates are important for providing context to Pb exposure across the landscape and should incorporate ecologically relevant endpoints (e.g., growth, survival, behavior, and reproduction).

Pb contamination and distribution. The spatial distribution and availability of Pb in the environment are complicated by the need to account for multiple Pb source types (Figure 1). Studies that focus on ammunition sources
BOX 4. Position Statements on Avian Pb Poisoning from Professional Societies and Environmental Groups in the USA and Canada

American Association of Avian Veterinarians
http://www.aav.org/?page=leadbasedammo

American Bird Conservancy
http://www.abcbirds.org/abcprograms/policy/toxins/lead.html

Association of Fish and Wildlife Agencies

Chocolay Raptor Center
https://www.facebook.com/ChoclayRaptorCenter

Defenders of Wildlife

Fund for Animals
http://www.fundforanimals.org

Health Risks from Lead-Based Ammunition in the Environment—A Consensus Statement of Scientists
http://escholarship.org/uc/item/6dq3h64x

Humane Society of the United States
http://www.humanesociety.org

International Wildlife Rehabilitation Council
http://theiwrc.org

Izaak Walton League
http://www.iwla.org/index.php?ht1/4d/ContentDetails/i/17544

National Wildlife Rehabilitators Association
http://www.nwrwildlife.org

National Wolfwatcher Coalition
http://wolfwatcher.org

Natural Resources Defense Council
http://www.nrdc.org

North American Falconers Association
http://www.flyrodreel.com/blogs/tedwilliams/2012/may/hunting-ammunition-fishing

Northwood Alliance
http://www.northwoodalliance.org

Peregrine Fund
http://www.peregrinefund.org/lead

Raptor Research Foundation

South Florida Wildlife Center
http://www.humanesociety.org/animal_community/shelters/wildlife_care_center

Trumpeter Swan Society

Upper Peninsula Environmental Coalition
http://www.upenvironment.org

Western Association of Fish and Wildlife Agencies

Wildlife Conservation Society
http://www.wcs.org

Wildlife Society

The Condor: Ornithological Applications 116:408–428, © 2014 Cooper Ornithological Society
for birds commonly fail to account for other potential environmental Pb exposures. However, we can get a coarse estimate of Pb deposited in the environment by counting the number of harvested animals in a particular location, assuming that all were killed by Pb bullets and that offal remains were left in the field. For example, annual harvests of >200,000 white-tailed deer (Odocoileus virginianus) in Minnesota, an estimated 2 million prairie dogs in 3 U.S. states, and 3.1 million roe deer (Capreolus capreolus) in Germany, France, Austria, Poland, and the Czech Republic have been reported (cf. Thomas 2013). Recent isotopic studies, in conjunction with field studies, are now helping to disentangle exposure histories and have demonstrated that differentiating among multiple sources of Pb is possible (Church et al. 2006, Finkelstein et al. 2010, Lamberti et al. 2011). Other studies have confirmed Pb bullet fragments or fishing gear as the source of mortality through x-rays and necropsies (e.g., Pokras and Chafel 1992, Franson et al. 2003, Cruz-Martinez et al. 2012).

Pb contamination associated with hunting and recreational shooting is not homogeneous across the landscape, and the combination of seasonal hunting activity and annual variation in harvest rates among locations adds a temporal component to Pb risk across the landscape. Thus, exposure risk is likely maximized when spatial and temporal patterns of Pb availability converge in important habitats and life stages, such as in foraging ranges associated with nest sites (Walters et al. 2010) or in migration corridors for raptors (McBride et al. 2004). As a result, if managers are to identify key areas for targeting Pb reduction, there is a clear need for more robust, temporally dynamic, and higher-resolution estimates of Pb availability on the landscape that are separately associated with various sources of Pb.

Pb contamination and environmental stressors. The effects of Pb on birds are generally assessed independently of other environmental conditions. Much less is known about the extent to which sublethal Pb exposure interacts with other environmental stressors experienced by free-living birds, possibly resulting in behavioral abnormalities, decreased clutch sizes, reduced growth rates (Burger and Gochfeld 1994, 2000), reduced hematocrit levels (Redig et al. 1991), reduced δ-ALAD activity (Hoffman et al. 1985, Finkelstein et al. 2012), and impaired neural development in young birds (Dey et al. 2000). Kelly and Kelly (2005) found that Pb-intoxicated swans were more prone to collisions with power lines than non-intoxicated swans, which suggests that sublethal Pb toxicosis may indirectly elevate mortality rates. Research that can address the issue of multiple stressors under field conditions will be critical for assessing the combined and relative risks of Pb and habitat conditions on bird species.

Demographic effects. Ascribing a direct link between Pb and population trajectories (λ) is exceedingly difficult (Kendall et al. 1996) because it requires estimates of cause-specific mortality rates that can be obtained only through intensive sampling efforts combined with necropsies and toxicological investigations. Projections have been made under varying exposure scenarios for such intensively managed species as the California Condor (Finkelstein et al. 2012), in which all individuals in the population are closely monitored and the cause of every known death is investigated. For other species, targeted and robust estimates of the influence of Pb on key demographic parameters (e.g., adult and juvenile mortality, fecundity) would be useful but generally do not exist. For example, Grand et al. (1998) found that survival of female Spectacled Eiders exposed to Pb from ingesting spent shot were substantially lower than those of unexposed females (77% vs. 44%), which may have made it difficult for some local populations to recover. Such an approach could facilitate a better understanding of Pb effects on key demographic parameters that may go into later population estimates and projections.

Current Approaches to Decrease Avian Mortality from Pb

Many approaches have been taken to reduce the availability of Pb ammunition and tackle to birds. Redistribution of shot through sediment cultivation, raising water levels in wetlands to reduce access to spent Pb shot, and providing uncontaminated food to highly endangered species are among the techniques used to reduce Pb exposure for specific species or at local scales (Snyder and Snyder 1989, Thomas et al. 2001). Approaches such as Pb-free ammunition and tackle giveaways and exchanges, and prohibitions on the use of Pb-based ammunition and tackle, are designed to reduce the amount of Pb entering the environment, can be applied at local to national scales, and can affect interests beyond the site- or species-management level. These measures can generally be separated into regulatory and voluntary approaches. The experiences described below reflect the diverse opinions surrounding legislative restriction of Pb ammunition and fishing tackle, and the broad engagement needed for voluntary approaches to be effective.

Federal Regulatory Measures

Ammunition. Many countries have banned Pb shot for waterfowl hunting, yet only Sweden and Denmark have banned Pb ammunition for all forms of hunting (Avery and Watson 2009). The U.S. and Canadian governments banned Pb ammunition for waterfowl hunting in 1991 and 1999, respectively, using their jurisdictional authority under the Migratory Bird Treaty Act. Studies conducted after this ban found a substantial decline in Pb shot exposure in waterfowl (Anderson et al. 2000, Stevenson et al. 2005), resulting in a 64% decline in annual Pb poisoning...
in Mallards (Anderson et al. 2000). Currently, U.S. and Canadian migratory bird regulations prohibit hunting waterfowl and American Coots (*Fulica americana*) with Pb shot; all other hunted migratory birds can still be shot with Pb (D. J. Case and Associates 2006; Environment Canada: http://www.ec.gc.ca/reneg.html). The U.S. National Wildlife Refuge System requires that hunters possess and use only approved nontoxic ammunition while hunting on Waterfowl Production Areas (50 CFR 32.2(k)). Individual refuges have adopted specific rules that require the use of nontoxic ammunition outside of these areas for hunting waterfowl, upland game birds, Mourning Doves, red foxes (*Vulpes vulpes*), and coyotes (*Canis latrans*; 50 CFR 32.20–32.70). U.S. National Park Service personnel have used non-Pb ammunition since 2008 (Ross-Winslow and Teel 2011). Further, the U.S. Army will issue a new Pb-free version of the 7.62-mm rounds fired from the M-14 to troops in 2014 (http://www.army.mil/article/106710/Picatinny_ammo_goes_from_regular_to_unleaded).

Fishing tackle. In the most sweeping reform, the European Union is on track to ban Pb in fishing tackle by June 2015 (European Fishing Tackle Trade Association; http://www.eftta.com/english/news_indepth.html?cart&SKU=2047259450). All Pb fishing tackle has been banned in Denmark since 2002, and Pb tackle (0.6–28.4 g) has been banned in the United Kingdom since 1987 (United Nations Environment Programme 2013). It is illegal to use Pb fishing sinkers and jigs weighing <50 g in National Parks and National Wildlife Areas in Canada (SOR 96–313, 23.4 17(h)). There are some restrictions on the use of Pb fishing gear in U.S. national wildlife refuges and national parks, but these decisions have been made at the level of the individual refuge or park (50 CFR 32.20–32.70). For example, Yellowstone National Park banned most Pb tackle because of concerns regarding “alarmingly low populations” of Trumpeter Swans (*Cygnus buccinator*) and loons (http://www.nps.gov/yell/planyourvisit/upload/L3FishReg.pdf). The park continues to allow Pb-core line and heavy (>2 kg) downrigger weights used to fish for deep-dwelling lake trout, with the rationale that these weights are too large to be ingested by waterfowl.

State and Provincial Regulatory Measures

With the exception of hunting laws regulated under the Migratory Bird Treaty Act and on select federal lands, states and provinces have jurisdiction for establishing hunting seasons, bag limits, and limits on types of firearms, ammunition, and fishing tackle. Many states and wetland management agencies do not permit Pb ammunition in aquatic habitats, regardless of the target species. This has resulted in a patchwork of Pb regulations across the United States and Canada (D. J. Case and Associates 2006). Approximately 35 states have established areas in which waterfowl Pb-shot regulations have expanded to encompass non-waterfowl, but these regulations have typically focused on upland game-bird hunting and vary by state, by target species, and even by land ownership within a particular state (Thomas 2009).

In October 2013, California became the first U.S. state to prohibit the use of all Pb ammunition for hunting (Assembly Bill 711). The new law will not be fully enacted until 2019. Previously, the State of California passed the Ridley-Tree Condor Preservation Act, which called for use of non-Pb ammunition for all hunting (including big game) in the range of the California Condor (Assembly Bill 821, 2007). A study that examined Pb levels before and after the ban found that Golden Eagle and Turkey Vulture blood Pb levels declined following the ban (Kelly et al. 2011), although this study was of short duration and lacked replicate study sites (Box 2). A significant effect in reducing California Condor Pb exposure has not yet been realized in California in the short time of the ban (Finkelstein et al. 2012). Inadequate compliance, exposure to other sources of Pb, home ranges that extend beyond the area where Pb ammunition has been banned, and feeding on contaminated marine-mammal carcasses are among the possible factors contributing to the persistence of Pb in condors despite the Pb prohibition.

The requirements for nontoxic fishing gear also vary considerably by state, with more restrictions in areas with sizable populations of loons and swans. Currently, 6 states regulate the sale and/or use of Pb fishing tackle (Maine, Massachusetts, New Hampshire, New York, Vermont, and Washington); 4 states have explicit recommendations for voluntary use of non-Pb fishing tackle (Illinois, Iowa, Minnesota, and Montana; http://joomla.wildlife.org/documents/positionstatements/lead.and.wildlife.pdf). These efforts focus primarily on small Pb sinkers and are aimed at reducing Pb exposure to swans, loons, and other piscivorous birds.

Voluntary Approaches

Voluntary approaches to decreasing the use of Pb ammunition and tackle can be as successful as, or more successful than, legislated requirements, and sportsmen are indicating buy-in by supporting the suggested change. Ross-Winslow and Teel (2011) provide a detailed accounting of voluntary Pb reduction programs by state. Voluntary approaches fall under two general categories: (1) giveaways or exchanges of nontoxic ammunition and tackle and (2) education and outreach efforts.

Pb fishing-tackle exchange programs have been implemented in several states, largely to protect loon and swan populations (Ross-Winslow and Teel 2011). More than 40,000 Pb sinkers were collected from anglers in state parks and fishing stores in 1 yr in New Hampshire and Vermont (http://www.nwf.org/news-and-magazines/).
Getting the Lead Out: A Program to Reduce Lead Ammunition Use for Hunter Welfare - Published in The Condor: Ornithological Applications, Volume 116 Issue 4, pages 408-428

Lead poisoning in birds has been a significant issue for wildlife conservation. In an effort to promote the use of non-lead ammunition, several programs have been initiated. One example is the Yurok Tribe in northern California, which has launched a program to educate hunters about the risks and benefits of non-lead ammunition. This program has been supported by voluntary use of non-lead ammunition as part of an effort to reduce Pb exposure in wildlife.

Several state fish-and-game agencies no longer use Pb in internal agency operations, such as Oregon Department of Fish and Wildlife. The U.S. Department of Agriculture Animal and Plant Health Inspection Service Wildlife Services have adopted non-Pb ammunition for some of their programs for nuisance wildlife species. The use of education and outreach as part of voluntary programs to reduce Pb exposure in wildlife has received support from several groups. Outreach activities are already occurring in many areas as a result of efforts by states, provinces, nongovernmental organizations, federal agencies, and tribes.

For example, the Yurok Tribe in northwestern California educates citizens about Pb ammunition risks and promotes non-Pb ammunition alternatives as part of an effort to restore California Condors to the region. Partnering with Bullets and Brass, an ammunition reloading company, and the Institute for Wildlife Studies, this group launched a program to educate hunters and build on their cultural stewardship ideals. The Yurok Tribe also purchased 8,900 ha of potential condor habitat, which is managed as Pb-free. Similarly, the Arizona Game and Fish Department has developed strategies for educating hunters to improve their understanding of the negative consequences of Pb exposure on California Condors in Arizona. Several conservation organizations, such as Arizona Antelope Foundation, Arizona Desert Bighorn Sheep Society, Arizona Chapter of the National Wild Turkey Federation, and others in the Kaibab Plateau region, have formed a coalition supporting voluntary education efforts to reduce Pb available to condors.

To our knowledge, only 2 peer-reviewed studies have assessed the effectiveness of non-Pb ammunition under traditional hunting conditions. These studies revealed Pb-free and Pb-core rifle cartridges. In that study, wild ungulates were shot, and the authors found that the killing potential assessed via wound diameters and maximum cross-sectional area were similar between Pb-free and Pb-core rifle cartridges. However, it is not clear whether the lack of Pb-free options results from lack of market demand or lack of production by ammunition manufacturers.

Anglers can use a variety of materials for non-Pb fishing weights and sinkers, including bismuth, tin, tungsten, steel, and brass. Natural stone is also an option.
for some fishing applications (http://www.recycledfish.org). We have not found a formal review of the effectiveness of various types of fishing tackle or comparisons among Pb and non-Pb weights and sinkers. Given that these materials vary in density, malleability, and cost, a careful review of the performance of these materials in different fishing applications would be helpful.

Pathways to Decrease Avian Exposure to Pb

One approach to decrease avian mortality from Pb poisoning would be a federal ban on Pb ammunition and fishing tackle. On the other hand, lessons learned from environmental decision-making suggest taking an approach that recognizes the interests and concerns of a diverse group of stakeholders across multiple levels of governance (Walker et al. 2006, Walker 2007). Further, despite the success of federal regulations for non-Pb ammunition for waterfowl hunting, legislative approaches to protect additional species of birds are more likely to occur on a state-by-state or province-by-province basis. Even where federal agencies maintain control (e.g., migratory and ESA-listed species, EPA regulations), there may be reason to defer to state, provincial, or local oversight. Below, we discuss potential incentive-based and regulatory approaches that might be considered in conjunction with current programs and regulations.

Federal, provincial, and state leadership. U.S. and Canadian federally mandated removal of Pb from ammunition used to hunt waterfowl resulted in a significant and rapid reduction in Pb exposure in waterfowl and prevented the loss of birds to Pb poisoning (U.S. Fish and Wildlife Service 1976, 1986, 1988, Anderson et al. 2000, Samuel and Bowers 2000, Stevenson et al. 2005), thus demonstrating the efficacy of legal restrictions on the use of Pb ammunition for hunting. For example, by 1996–1997, only 1.1% of 1,318 ducks collected on the Mississippi flyway had apparently been shot using Pb ammunition (Anderson et al. 2000).

The efficacy of laws restricting the use of Pb tackle has not been well tested because there are few and they are relatively new. However, analyses comparing pre- and post-restriction (1989–1999 vs. 2000–2011) mortality in New Hampshire loons found that the rate of Pb fishing-tackle mortalities fell marginally by 3% (preban adult mortality [± SE] = 12.5% ± 1.7; postban mortality = 9.5% ± 1.2; Grade 2011, Vogel 2013). Vogel considers the estimates of mortality to be conservative and concludes that Pb sinkers are a major cause (49% of known deaths) of mortality for Common Loons in New Hampshire.

Voluntary approaches. Some advocates, managers, and decision-makers have chosen to expand voluntary programs in lieu of regulatory approaches, or recommend such programs as interim steps to generate enough support for passage of a Pb ban. The National Park Service and some states have already implemented these measures (Ross-Winslow and Teel 2001, Epps 2014). The Association of Fish and Wildlife Agencies, led by the directors of state agencies, has formed a “Lead and Fish and Wildlife Health” Working Group and is an important leader on this issue. Their positions and initiatives reflect responsiveness to public sentiment and the missions of member agencies to manage for conservation, hunting, and fishing. Further, some federal, provincial, and state agencies are voluntarily switching to use of nontoxic ammunition and fishing tackle in the course of their duties (e.g., dispatching sick or wounded animals or shooting animals for depredating crops or livestock).

Non-Pb ammunition and tackle giveaways or exchanges in key areas. Hunters have participated in non-Pb ammunition exchange or giveaway programs in California, Utah, Wyoming, and Arizona in an effort to help conserve the California Condor and reduce Pb poisoning in wild birds (Siegl et al. 2009, Southwest Condor Review Team 2012, Ventana Wildlife Society 2012). Anglers have participated in similar programs in Maine, Massachusetts, New Hampshire, New York, and Vermont to aid waterbird conservation (Ross-Winslow and Teel 2011). Exchanges and giveaways can also serve as an important communication tool by educating hunters and anglers on the hazards of using Pb ammunition and fishing tackle and explaining the benefits of switching to nontoxic alternatives.

Outreach and communication. Informing decision-makers, hunters, anglers, and the general public about Pb poisoning resulting from spent ammunition and lost fishing tackle may increase support for the use of non-Pb ammunition and tackle. The utility of outreach efforts alone has been questioned (Thomas 2011; but see Sieg et al. 2009, Schroeder et al. 2012). However, from research designed to investigate which communication strategies might increase support for restrictions on Pb ammunition, Schroeder et al. (2012) suggested that messages addressing the key beliefs dividing those who support Pb restrictions from those who do not are most likely to be successful. Social scientists would be key allies in helping to define the role of education and outreach efforts and aid in crafting key messages to eliminate the use of Pb-based ammunition and fishing tackle while maintaining hunting and fishing opportunities (Ross-Winslow and Teel 2011).

Summary

We have highlighted a substantial problem that continues to cause significant morbidity and mortality for many bird species in North America and beyond. Sufficient information is available to adequately document the issue and provide a range of potential approaches and research priorities for the future. The challenge for decision-makers seeking to conserve bird populations is to use past
experience and existing scientific information to efficiently and effectively reduce Pb exposure. Successful approaches are most likely to come from wildlife professionals, hunters, anglers, and other stakeholders working together to recognize a collective long-term interest in the sustainability of wildlife resources and society’s hunting-and-angling heritage.

ACKNOWLEDGMENTS

We thank C. Epps, E. Forsman, C. Henny, C. Phillips, and five anonymous reviewers for comments on the manuscript. K. Huber provided research assistance. We are grateful to J. Cooney, C. Epps, E. Forsman, L. Neish, J. Schulz, and Project SOAR for photos. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

LITERATURE CITED

Church, M. E., R. Gwiazda, R. W. Risebrough, K. Sorenson, C. P. Chamberlain, S. Farry, W. Heinrich, B. A. Rideout, and D. R.

Knott, J., J. Gilbert, D. G. Hocom, and R. E. Green (2010). Implications for wildlife and humans of dietary exposure to...
lead from fragments of lead rifle bullets in deer shot in the
Kramer, J. L., and P. T. Redig (1997). Sixteen years of lead
of Raptor Research 31:327–332.
Lambertucci, S. A., J. A. Donázar, A. D. Huertas, B. Jiménez, M.
the problem of lead poisoning to a South-American top
scavenger: Lead concentrations in feathers of wild Andean
Grit size preferences and confirmation of ingested lead
pellets in chukars (Alectoris chukar). Western North American
Lewis, J. C., and E. Legler, Jr. (1968). Lead shot ingestion by
Mourning Doves and incidence in soil. Journal of Wildlife
Management 32:476–482.
Liu, J., R. A. Goyer, and M. P. Waalkes (2008). Toxic effects of
metals. In Casarett and Doull’s Toxicology: The Basic Science
of Poisons, seventh edition (C. D. Klaassen, Editor). McGraw-
Hill Medical, New York, NY, USA. pp. 931–979.
Locke, L. N., and N. J. Thomas (1996). Lead poisoning of
waterfowl and raptors. In Noninfectious Diseases of Wildlife,
second edition (A. Fairbrother, L. N. Locke, and G. L. Huff,
117.
collisions in the United States: Estimates of annual mortality
and species vulnerability. The Condor 116:8–23.
Loss, S. R., T. Will, and P. P. Marra (2013). The impact of free-
ranging domestic cats on wildlife of the United States. Nature
Communications 4:article 1396.
Mao, J. S., J. Cao, and T. E. Graedel (2009). Losses to the
environment from the multilevel cycle of anthropogenic lead.
Environmental Pollution 157:2670–2677.
Marn, C. M., R. E. Mirachi, and M. E. Lisano (1988). Effects of diet
and cold weather on captive female Mourning Doves dosed
with lead shot. Archives of Environmental Contamination and
Toxicology 17:589–594.
Lead in the tissues of terrestrial raptors in southern Ontario,
96–103.
Mateo, R. (2009). Lead poisoning in wild birds in Europe and the
to inform species management: Predicting spatially explicit
habitat suitability of a colonial vulture spreading its range.
Blood-lead and ALAD activity levels of Cooper’s Hawks
(Accipiter cooperii) migrating through the southern Rocky
Meretsky, V. J., N. F. R. Snyder, S. R. Beissinger, D. A. Clendenen,
and J. W. Wiley (2000). Demography of the California Condor:
Implications for reestablishment. Conservation Biology 14:
957–967.
Mertz, D. B. (1971). The mathematical demography of the
453.
Müller, Y. M. R., L. B. D. Rivero, M. C. Carvalho, K. Kobus, M. Farina,
and E. M. Nazari (2008). Behavioral impairments related to
lead-induced developmental neurotoxicity in chicks. Archives
of Toxicology 82:445–451.
Newth, J. L., R. L. Cromie, M. J. Brown, R. J. Delahay, A. A.
Meharg, C. Deacon, G. J. Norton, M. F. O’Brien, and D. J. Pain
(2012). Poisoning from lead gunshot: Still a threat to wild
waterbirds in Britain. European Journal of Wildlife Research
59:195–204.
Nriagu, J. O. (Editor) (1978). The Biogeochemistry of Lead in the
Environment, part B: Biological Effects. Elsevier/North Holland
Biomedical Press, Amsterdam, The Netherlands.
Environmental Contaminants in Biota: Interpreting Tissue
Concentrations, second edition (W. N. Beyer and J. P. Meador,
Pain, D. J. (1991). Lead shot densities and settlement rates in
Camargue marshes, France. Biological Conservation 57:273–
286.
of lead poisoning in terrestrial birds from ammunition
sources. In Ingestion of Lead from Spent Ammunition:
Implications for Wildlife and Humans (R. T. Watson, M. Fuller,
M. Pokras, and W. G. Hunt, Editors). The Peregrine Fund,
Boise, ID, USA. pp. 99–118.
in captive Andean Condors (Vultur gryphus). Journal of
of prairie dogs: A portal for lead entering wildlife food chains.
fishing sinkers in adult Common Loons (Gavia immer) in New
Potts, G. R. (2005). Incidence of ingested lead gunshot in wild
Greyl Partridges (Perdix perdix) from the UK. European Journal
of Wildlife Research 51:31–34.
Radomski, P., T. Heinrich, T. S. Jones, P. Rivers, and P. Talmage
26:206–212.
Leonard, D. Stang, and P. J. Wingate (2008). Sources and
implications of lead ammunition and fishing tackle on natural
resources. Technical Review 08-01. The Wildlife Society and
American Fisheries Society, Bethesda, MD, USA.
Redig, P. T., E. M. Lawler, S. Schwartz, J. L. Dunnette, B.
exposure to sublethal concentrations of lead acetate on
heme synthesis and immune function in Red-tailed Hawks.
S. M. Haig, J. D’Elia, C. Eagles-Smith, et al.

Lead poisoning in birds 427

Archives of Environmental Contamination and Toxicology 21: 72–77.

Reeve, A. F., and T. C. Vosburgh (2005). Recreational shooting of
prairie dogs. In Conservation of the Black-tailed Prairie Dog (J.
139–156.

Rideout, B. A., I. Stalis, R. Papendick, A. Pessier, B. Buschner, M. E.
Finkelstein, D. R. Smith, M. Johnson, M. Mace, R. Stroud, J.
Brandt, J. Burnett, et al. (2012). Patterns of mortality in free-
ranging California Condors (Gymnogyps californianus). Jour-

Pheasant population dynamics. Wildlife Society Bulletin 29:
33–38.

lead from units of the National Park System: Understanding
and reaching out to audiences. The George Wright Forum 28:
34–77.

scavengers must be large soaring fliers. Journal of Theoretical
Biology 228:431–436.

Saito, K. (2009). Lead poisoning of Steller’s Sea-Eagle (Haliaeetus
pelagicus) and White-tailed Eagle (Haliaeetus albicilla) caused
by the ingestion of lead bullets and slugs, in Hokkaido Japan.
In Ingestion of Lead from Spent Ammunition: Implications for
Wildlife and Humans (R. T. Watson, M. Fuller, M. Pokras, and
302–309.

Samuel, M. D., and E. F. Bowers (2000). Lead exposure in
American Black Ducks after implementation of non-toxic

Neurotoxic effects and biomarkers of lead exposure: A
review. Reviews on Environmental Health 24:15–45.

Sanderson, G. C., and F. C. Bellrose (1986). A review of the
problem of lead poisoning in waterfowl. Special Publication
4. Illinois Natural History Survey, Champaign, IL, USA.

Scheuhammer, A. M., D. E. Bond, N. M. Burgess, and J. Rodriguez
(2003). Lead and stable lead isotope ratios in soil, earth-
worms, and bones of American Woodcock (Scolopax minor)
from eastern Canada. Environmental Toxicology and Chem-

environmental impacts of lead shotgunshell ammunition and
lead fishing weights in Canada. Occasional Paper 88. of the
Canadian Wildlife Service, Ottawa, Ontario.

lead exposure in American Woodcock (Scolopax minor) in
eastern Canada. Archives of Environmental Contamination
and Toxicology 36:334–340.

isotope ratios to distinguish sources of lead exposure in wild
birds. Ecotoxicology 7:37–42.

raptors from strychnine poisoned ground squirrels. Journal of

Schroeder, S. A., D. C. Fulton, W. Penning, and K. DonCarlos
(2012). Using persuasive messages to encourage hunters to
support regulation of lead shot. Journal of Wildlife Manage-
ment 76:1528–1539.

harvest monitoring program annual report. Missouri Depart-
ment of Conservation, Resource Science Division, Columbia,
MO, USA.

Experimental lead pellet ingestion in Mourning Doves
(Zenaida macroura). American Midland Naturalist 158:177–
190.

Bonnot, L. G. Britt, and M. Paine (2006). Acute lead toxicosis in
Mourning Doves. Journal of Wildlife Management 70:413–
421.

Schulz, J. H., J. J. Millsapgh, B. E. Washburn, G. R. Wester, J. T.
Lanigan III, and J. C. Franson (2002). Spent-shot availability
and ingestion on areas managed for Mourning Doves.

Schulz, J. H., J. J. Millsapgh, D. T. Zekor, and B. E. Washburn
(2003). Enhancing sport hunting opportunities for urbanites.

Dove population status, 2012. U.S. Department of the
Interior, Fish and Wildlife Service, Division of Migratory Bird
Management, Washington, DC, USA.

Sears, J. (1988). Regional and seasonal variations in lead
poisoning in the Mute Swan Cygnus olor in relation to the
distribution of lead and lead weights, in the Thames area,

reduction efforts within the northern Arizona range of the
California Condor. In Ingestion of Lead from Spent Ammu-
nition: Implications for Wildlife and Humans (R. T. Watson,
M. Fuller, M. Pokras, and W. G. Hunt, Editors). The Peregrine
Fund, Boise, ID, USA. pp. 341–349.

Smith, M. C., M. A. Davison, C. M. Schexnider, L. Wilson, J.
Bohannon, J. M. Grassley, D. K. Kraege, W. S. Boyd, B. D. Smith,
M. Jordan, and C. Grue (2009). Lead shot poisoning in swans:
Sources of pellets within Whatcom County, WA, USA, and
Sumas Prairie, BC, Canada. In Ingestion of Lead from Spent
Ammunition: Implications for Wildlife and Humans (R. T.
Watson, M. Fuller, M. Pokras, and W. G. Hunt, Editors). The

Snyder, N. F. R., and H. A. Snyder (1989). Biology and
conservation of the California Condor. Current Ornithology

Condor: A Saga of Natural History and Conservation.
Academic Press, San Diego, CA, USA.

Southwest Condor Review Team (2012). A review of the third
five years of the California Condor Reintroduction Program in
Ecological Services Office, Phoenix, AZ, USA.

poisoning of bald (Haliaeetus leucocephalus) and golden
(Aquila chrysaetos) eagles in the U.S. inland Pacific Northwest

Ventana Wildlife Society (2012). First-year results of a free non-lead ammunition program to assist California Condor recovery in Central California. Ventana Wildlife Society, Salinas, CA, USA.

