Translator Disclaimer
1 September 2002 GEOCHEMISTRY OF WATER AND GROUND WATER IN THE NHECOLÂNDIA, PANTANAL OF MATO GROSSO, BRAZIL: VARIABILITY AND ASSOCIATED PROCESSES
Author Affiliations +
Abstract
A distinctive feature of the Nhecolândia, a sub-region of the Pantanal wetland in Brazil, is the presence of both saline and freshwater lakes. Saline lakes used to be attributed to a past arid phase during the Pleistocene. However, recent studies have shown that saline and fresh water lakes are linked by a continuous water table, indicating that saline water could come from a contemporary concentration process. This concentration process could also be responsible for the large chemical variability of the waters observed in the area. A regional water sampling has been conducted in surface and sub-surface water and the water table, and the results of the geochemical and statistical analysis are presented. Based on sodium contents, the concentration shows a 1: 4443 ratio. All the samples belong to the same chemical family and evolve in a sodic alkaline manner. Calcite or magnesian calcite precipitates very early in the process of concentration, probably followed by the precipitation of magnesian silicates. The most concentrated solutions remain under-saturated with respect to the sodium carbonate salt, even if this equilibrium is likely reached around the saline lakes. Apparently, significant amounts of sulfate and chloride are lost simultaneously from the solutions, and this cannot be explained solely by evaporative concentration. This could be attributed to the sorption on reduced minerals in a green sub-surface horizon in the “cordilhieira” areas. In the saline lakes, low potassium, phosphate, magnesium, and sulfate are attributed to algal blooms. Under the influence of evaporation, the concentration of solutions and associated chemical precipitations are identified as the main factors responsible for the geochemical variability in this environment (about 92 % of the variance). Therefore, the saline lakes of Nhecolândia have to be managed as landscape units in equilibrium with the present water flows and not inherited from a past arid phase. In order to elaborate hydrochemical tracers for a quantitative estimation of water flows, three points have to be investigated more precisely: (1) the quantification of magnesium involved in the Mg-calcite precipitation; (2) the identification of the precise stoichiometry of the Mg-silicate; and (3) the verification of the loss of chloride and sulfate by sorption onto labile iron minerals.
Laurent Barbiéro, José P. de Queiroz Neto, Gilles Ciornei, Arnaldo Y. Sakamoto, Benjamin Capellari, Erminio Fernandes and Vincent Valles "GEOCHEMISTRY OF WATER AND GROUND WATER IN THE NHECOLÂNDIA, PANTANAL OF MATO GROSSO, BRAZIL: VARIABILITY AND ASSOCIATED PROCESSES," Wetlands 22(3), (1 September 2002). https://doi.org/10.1672/0277-5212(2002)022[0528:GOWAGW]2.0.CO;2
JOURNAL ARTICLE
13 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top