Translator Disclaimer
1 June 2005 SEED DISPERSAL INTO WETLANDS: TECHNIQUES AND RESULTS FOR A RESTORED TIDAL FRESHWATER MARSH
Author Affiliations +
Abstract

Although seed dispersal is assumed to be a major factor determining plant community development in restored wetlands, little research exists on density and species richness of seed available through dispersal in these systems. We measured composition and seed dispersal rates at a restored tidal freshwater marsh in Washington, DC, USA by collecting seed dispersing through water and wind. Seed dispersal by water was measured using two methods of seed collection: (1) stationary traps composed of coconut fiber mat along an elevation gradient bracketing the tidal range and (2) a floating surface trawl net attached to a boat. To estimate wind dispersal rates, we collected seed from stationary traps composed of coconut fiber mat positioned above marsh vegetation. We also collected a small number of samples of debris deposited along high tide lines (drift lines) and feces of Canada Goose to explore their seed content. We used the seedling emergence method to determine seed density in all samples, which involved placing the fiber mats or sample material on top of potting soil in a greenhouse misting room and enumerating emerging seedlings. Seedlings from a total of 125 plant species emerged during this study (including 82 in river trawls, 89 in stationary water traps, 21 in drift lines, 39 in wind traps, and 10 in goose feces). The most abundant taxa included Bidens frondosa, Boehmeria cylindrica, Cyperus spp., Eclipta prostrata, and Ludwigia palustris. Total seedling density was significantly greater for the stationary water traps (212±30.6 seeds/m2/month) than the equal-sized stationary wind traps (18±6.0 seeds/m2/month). Lower-bound estimates of total species richness based on the non-parametric Chao 2 asymptotic estimators were greater for seeds in water (106±1.4 for stationary water traps and 104±5.5 for trawl samples) than for wind (54±6.4). Our results indicate that water is the primary source of seeds dispersing to the site and that a species-rich pool of dispersing propagules is present, an interesting result given the urbanized nature of the surrounding landscape. However, species composition of dispersing seeds differed from vegetation of restored and natural tidal freshwater marshes, indicating that planting is necessary for certain species. At other restoration sites, information on densities of dispersing seeds can support decisions on which species to plant.

Kelly P. Neff and Andrew H. Baldwin "SEED DISPERSAL INTO WETLANDS: TECHNIQUES AND RESULTS FOR A RESTORED TIDAL FRESHWATER MARSH," Wetlands 25(2), 392-404, (1 June 2005). https://doi.org/10.1672/14
Published: 1 June 2005
JOURNAL ARTICLE
13 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top