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Incorporating productivity as a measure of fitness into models  
of breeding area quality of Arctic peregrine falcons

Jason E. Bruggeman, Ted Swem, David E. Andersen, Patricia L. Kennedy and Debora Nigro

J. E. Bruggeman (drjeb74@gmail.com), Minnesota Cooperative Fish and Wildlife Research Unit, Dept of Fisheries, Wildlife and Conservation 
Biology, Univ. of Minnesota, St. Paul, MN 55108, USA. Present address: 4157 West 145th Street, Savage, MN 55378, USA. – T. Swem, US 
Fish and Wildlife Service, Fairbanks, AK, USA. – D. E. Andersen, US Geological Survey, Minnesota Cooperative Fish and Wildlife Research Unit, 
St. Paul, MN, USA. – P. L. Kennedy, Eastern Oregon Agricultural Research Center, Dept of Fisheries and Wildlife, Oregon State Univ., Union, 
OR, USA. – D. Nigro, Bureau of Land Management, Fairbanks, AK, USA.

Using empirical location data from individuals to model habitat quality and species distributions is valuable towards 
understanding habitat use of wildlife, especially for conservation and management planning. Incorporating measures of 
reproductive success or survival into these models helps address the role of vital rates (a surrogate of fitness) in affecting a 
species’ distribution. We used 24-year datasets of Arctic peregrine falcon Falco peregrinus tundrius nest-site locations and 
productivity from the Colville River Special Area, Alaska, USA to model suitability of breeding habitat and the relative 
quality of used and potential nest sites. We used zero-inflated negative binomial regression models and covariates describing 
nest-site productivity, area of surrounding prey habitat, geology, topography and land-cover type to model and predict 
intensity of Arctic peregrine falcon nest-site use along the Colville River, and developed a predictive map of intensity of 
nest-site use. Regions of higher predicted intensity of use were characterized by steeper slopes, greater area of prey habitat, 
and higher average productivity, which are likely attributed to minimizing predation risk, gaining advantages for hunting, 
having sufficient prey resources, site quality, and overall fitness. Including productivity in intensity of nest-site use models 
improved the models, supporting our supposition that adding a fitness parameter enhanced the predictive capability of 
the species distribution model. Areas predicted to have higher intensity of use by our model can be used to focus efforts 
of continued protection of areas with frequently occupied and productive nest sites, and conversely, identify areas where 
protection of nest sites is likely to have few conservation benefits.

Species distribution modeling based on habitat use has 
become a valuable tool for wildlife management and con-
servation. Through identification of areas of higher use 
and their associated attributes, species distribution mod-
els have helped guide management efforts through better 
understanding of wildlife habitat-use patterns and leading 
to protection of important habitats (Dellinger et al. 2013, 
Squires et al. 2013). Such modeling may be used to examine 
covariates affecting spatial use of a variety of resources key 
to a species, including breeding, foraging, and wintering 
areas; movement corridors; and areas providing reduced pre-
dation risk (Bergman et al. 2006, Bruggeman et al. 2007, 
Dzialak et al. 2012).

Data input into species distribution models, and 
associated limitations, must be considered when evaluating 
their utility for management and conservation strategies.  

Empirical location data of individuals are used to 
parameterize species distribution models and can be of many 
forms, such as presence–absence, use–availability, presence-
only and count data (Buckland and Elston 1993, Manly  
et al. 2002, Pearce and Boyce 2006). These models are a 
function of covariates describing attributes of each indi-
vidual or location, which then provide information about 
variables related to a species’ distribution, resource use or 
behavior (Manly et al. 2002). However, interpreting high 
quality habitats as those with high likelihood of use may be 
problematic because individual fitness is related to a complex 
set of factors, including habitat selection patterns that may 
sometimes be misleading (Gaillard et al. 2010, Nielsen et al. 
2010). For example, maladaptive habitat selection occurs 
when individuals choose habitats that reduce reproduc-
tive success or survival (Misenhelter and Rotenberry 2000, 
Delibes et al. 2001, Streby et al. 2014b). Incorporating mea-
sures of fecundity and/or survival into species distribution 
models may provide a means of alleviating issues associ-
ated with maladaptive habitat selection (Mosser et al. 2009, 
DeCesare et al. 2014, Peterson et al. 2016). Limitations 
often exist on obtaining sufficient spatially-explicit data for 
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quantifying measures of fitness; however, surrogates of fit-
ness also may be useful for informing species distribution 
models. Roever et al. (2013) and McGreer et al. (2015), for 
example, quantified mortality and predation risk using loca-
tion data of mortality events and predators, respectively, to 
further inform their resource selection function models and 
identify areas of higher conservation importance.

Species that breed in Arctic regions and at high latitudes 
have been the focus of recent conservation concern owing 
to potential impacts of climate change (Post et al. 2009). 
In part because of these potential climate-related impacts, 
species distribution models have been used to assess a variety 
of species of previous and current conservation concern in 
the Arctic (Ferguson et al. 2000, McLoughlin et al. 2002, 
Booms et al. 2010, Wilson et al. 2012). Many of these 
studies used combinations of landscape, climate and sea-
sonal variables, along with breeding or parental state (e.g. 
pregnant or not pregnant; with or without young) to assess 
factors related to distribution, but to our knowledge none 
have incorporated fitness parameters into their models.

Arctic peregrine falcons Falco peregrinus tundrius (here-
after Arctic peregrine), which were a species of conservation 
concern during the 1950s–1990s, breed at high latitudes in 
portions of Alaska, Canada and Greenland (White 1968, 
US Dept of the Interior [USDOI] 2008). Arctic peregrine 
and many peregrine falcon F. peregrinus populations suffered 
drastic declines during the 1950s–1970s due primarily to 
exposure to DDT and other organochlorine pesticides that 
affected reproduction and survival (Ratcliffe 1970). Arctic 
peregrines were listed as endangered in 1973 under the US 
Endangered Species Act (ESA) and recovered sufficiently 
enough to be removed from the ESA in 1994 (US Fish and 
Wildlife Service 1994). Alaska’s Colville River Special Area 
(CRSA) was established in 1977, during the period of popu-
lation recovery, to conserve nesting and foraging habitat 
of Arctic peregrines (USDOI 2008). The CRSA is located 
within the National Petroleum Reserve in Alaska (NPR-A), 
which allows for oil and gas mining and exploration, and 
protective regulations for Arctic peregrines still exist under 
the CRSA Management Plan to minimize disturbance and 
preserve nesting and foraging habitat (USDOI 2008). How-
ever, additional information needs were identified to improve 
knowledge of Arctic peregrine ecology in the CRSA, better 
inform management decisions, and evaluate effectiveness of 
existing regulations (USDOI 2008).

We used 24 years of Arctic peregrine nest-site location 
and productivity data collected during the population’s 
recovery (Cade et al. 2003) to develop a species distribu-
tion model of intensity of nest-site use with a surrogate fit-
ness covariate for breeding Arctic peregrines throughout a 
portion of the CRSA. We incorporated productivity data 
from nest sites into models as a surrogate measure of fitness 
for two reasons. First, we used productivity data to iden-
tify areas with higher predicted intensity of nest-site use 
that were not confounded by potential maladaptive habitat 
selection occurring during the recovery. Second, during the 
recovery the Arctic peregrine population exhibited density 
dependence (Bruggeman et al. 2015, Swem and Matz 2018), 
which may negatively affect productivity. We also used 
knowledge of factors related to Arctic peregrine occupancy 
of nest sites and abundance on nesting cliffs in the CRSA 

(Bruggeman et al. 2015, 2016) to select covariates describ-
ing nest-site attributes (e.g. habitat; topography; prey habitat 
availability) to evaluate in models. The goals of our work 
were to: 1) model and predict Arctic peregrine productivity 
throughout a portion of our study area; 2) use results from 
1) to help predict and map the intensity of Arctic peregrine 
nest-site use for the purpose of identifying areas in our study 
area along the Colville River predicted to have higher inten-
sity of use for nesting; 3) evaluate the predictive capability of 
our model; and 4) assess how our findings related to current 
CRSA protective regulations.

Methods

Study area

Our study area consisted of a 347-km stretch of the Colville 
River and its surrounding landscape < 3 km from the river 
located in the 1 000 000-ha CRSA in Alaska, USA (centroid 
69°18¢43²N, 155°22¢90²W, Fig. 1A; Bruggeman et al. 
2016). Oil and gas exploration, fieldwork associated with 
monitoring Arctic peregrines and other natural resources, 
and recreation were primary activities in the CRSA during 
our study (USDOI 2008). The CRSA contained numer-
ous wetlands and vegetation was characterized by tundra 
plant communities except for the Colville River floodplain, 
where willow Salix spp. and alder Alnus spp. communities 
coincided with perennial herb pioneer communities (Bliss 
and Cantlon 1957).

Data collection

Migratory Arctic peregrines began arriving to the CRSA in 
late April, nested May–August on cliffs, bluffs and escarp-
ments along the Colville River, and returned to wintering 
areas after young fledged in August and September (Ambrose 
and Riddle 1988). Ted Swem led two surveys per year for 
Arctic peregrines by boat along the Colville River during 
1981, 1982, 1985, 1987–2002, 2005 and 2011. B. Dittrick, 
P. Schempf, and J. Silva led surveys in 1983, 1984 and 1986, 
respectively. Surveys were standardized among all years; no 
surveys were conducted in 2003, 2004 and 2006–2010. The 
first survey occurred during egg-laying and incubation in 
June; the second survey occurred during the nestling period 
in late July–early August. At each nest site encountered dur-
ing each survey, observers counted numbers of adults and 
young (second survey only), mapped the nest-site location, 
and recorded location by GPS when feasible. We digitized 
nest-site locations into a GIS layer and assigned a measure of 
precision based on an assessment of location certainty.

We obtained GIS layers of elevation (US Geological Sur-
vey 2017), land cover (Homer et al. 2004), sub surficial geol-
ogy (Beikman 1980), surficial geology (Karlstrom 1964), 
and streams in the CRSA. We used the elevation layer to 
generate aspect and slope layers at 10-m resolution in Arc-
GIS 9.2 (ESRI, CA, USA). We used the land-cover layer at 
30-m resolution to classify each raster cell as open water, 
wetlands with woody vegetation, wetlands with emergent 
herbaceous vegetation, barren, dwarf scrub, shrub or ‘other’ 
categories (Homer et al. 2004).
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Sampling universe

In GIS, we delineated a 1152-ha sampling universe within 
the CRSA study area that: encompassed potential nesting 
cliffs, escarpments, and bluffs on both sides of the Colville 
River; spanned the length of the river repeatedly surveyed 
over 24 years; and excluded the Colville River and its major 
tributary streams (Fig. 1B). We generated a lattice grid of 
12 748 765 points spaced 10-m apart spanning the sam-
pling universe to use for model predictions. We used a grid 
with 10-m resolution to correspond to the resolution of the 
elevation, aspect and slope layers.

Statistical analyses

Using the annual productivity for each nest-site location (i.e. 
number of young enumerated in the nest during the second 
survey) recorded during 24 years of surveys, we calculated 

the average annual productivity for each nest-site location 
based on the number of years the nest site was occupied for 
surveys having occupied–unoccupied, unoccupied–occupied, 
or occupied–occupied patterns during the first and second 
surveys. We defined a response variable as the average annual 
productivity for each nest-site location, defined eight covari-
ates (Table 1), extracted values for each covariate from each 
location, and developed linear regression models consisting 
of all possible covariate combinations. We fitted models in 
R (< www.r-project.org >) and selected the model with the 
highest adjusted-R2 value as the best model (Neter et al. 
1996). We used adjusted-R2 values to rank and select models 
of average productivity because we were using linear regres-
sion models and adjusted-R2 provides a measure of variabil-
ity explained while accounting for the number of covariates 
in the model (Neter et al. 1996). We used the best model to 
estimate average productivity for each of the 10-m lattice 
points for the purpose of deriving a productivity covariate 

Figure 1. (A) The Colville River Special Area (CRSA) in the National Petroleum Reserve-Alaska, located in northern AK, USA (inset), and 
(B) study area and sampling universe within the CRSA. Annual surveys for nesting Arctic peregrine falcons were conducted along the 
Colville River in the sampling universe during 1981–2002, 2005 and 2011.
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for our intensity of nest-site use modeling. To estimate aver-
age productivity, we extracted values from GIS layers for 
covariates included in the best model at each point, used the 
values to estimate average productivity at each point, and 
developed a raster map of hypothetical average productivity 
across the sampling universe.

Based on guidance provided by Aarts et al. (2012) for 
modeling species distribution, we developed a grid of 
123 173 100-m cells in GIS that spanned our sampling 
universe. The 100-m resolution represented a tradeoff 
between larger cells that may have contained more than 
one nest site and smaller cells that increased computa-
tional complexity and added little additional information 
to the model. We defined a response variable as the total 
number of years each cell was occupied by an Arctic per-
egrine nest site during the 24 years of surveys (i.e. inten-
sity of nest-site use). Aarts et al. (2012) demonstrated that 
as the number of cells, or availability points, increases in 
a given area, the likelihood for the resulting Poisson gen-
eralized linear model becomes a discrete approximation 
of the inhomogeneous Poisson point process (IPP) likeli-
hood. The IPP likelihood is a function of the intensity of 
presences (Warton and Shepherd 2010) and can be used 
to model count, presence–absence or use-availability data 
(Aarts et al. 2012).

We considered eight covariates (Table 1) and extracted 
values for each from each nest-site location or the centroid 
of each 100-m cell if no nest site was located in the cell. We 
also defined a covariate for average productivity (productiv-
ity, Table 1) estimated from the raster map (as described 
above) and extracted values for cell centroids. We used the 
observed average productivity value determined from sur-
veys for the 108 cells containing a nest site and predicted 
average productivity for cells not containing a nest site. 
We developed 255 Poisson regression models consisting 
of all possible covariate combinations of the original eight 
covariates and with each model containing productivity.  
We included productivity in all models to incorporate a 
surrogate of fitness that accounted for both consistency and 
numbers of young produced. We fitted Poisson models in 

R and calculated an AIC value for each model (Burnham 
and Anderson 2002). We also examined the suitability of 
negative binomial (NB), zero-inflated Poisson (ZIP), and 
zero-inflated negative binomial (ZINB) distributions to 
our data. For zero-inflated models, we used the same model 
structure for both the count (Poisson) and zero-inflated 
(binomial) components of the model. We separately fit-
ted models in R using package mass (Venables and Rip-
ley 2002) for NB models and package pscl (Zeileis et al. 
2008, Jackman 2015) for ZIP and ZINB models, calcu-
lated AIC values for each model, examined residual plots 
for best-approximating models with ΔAIC < 2 for each 
distribution, and compared AIC values among the four dis-
tributions. Based on the distribution that had best-approx-
imating models with the lowest AIC values, we ranked and 
selected the best-approximating models using ΔAIC val-
ues and calculated an Akaike weight (w) for each model 
(Burnham and Anderson 2002). We used AIC values to 
rank and select models of intensity of nest-site use because 
a comparable R2 statistic does not exist for zero-inflated 
models. We used the best-approximating model to estimate 
the intensity of Arctic peregrine nest-site use throughout 
the sampling universe by extracting values from GIS layers 
for covariates included in the best model at each 10-m lat-
tice grid point and using those values to estimate intensity 
of nest-site use at each point. We then developed a raster 
map of intensity of use for the CRSA in ArcGIS. Again, 
we note that predicted intensity of use includes a produc-
tivity covariate as either average productivity for nest sites 
or predicted average productivity for locations with no 
observed nest sites. Because there are no formal validation 
measures for the type of model that was the best-approxi-
mating model, we assessed the predictive capability of our 
model using GIS-derived statistics summarizing measures 
of predicted intensity of use for each nest-site location as 
detailed in Supplementary material Appendix 1. To exam-
ine whether inclusion of productivity improved model fit, 
we fitted ZINB regression models without productivity, cal-
culated an AIC value for each model, and compared AIC 
values to AIC values of our model results with productivity.

Table 1. Covariates used in analyses modeling factors related to average productivity of nest sites and intensity of nest-site use of Arctic per-
egrine falcons along the Colville River, AK, USA.

Covariate Definition

aspect Aspect of nest site or location (north, east, south, west).
elevgain Elevation gain between the nest site or location and the lowest elevation ≤ 3 km.
geology Surficial geology of the nest-site or location: 1) modern flood-plain and low-terrace and alluvial fan deposits (Qfp), 2) 

coarse- and fine-grained deposits with moderate to steep-sloped mountains and hills with bedrock exposures largely 
restricted to upper slopes and crestlines (Qrb), 3) dominantly fine-grained deposits associated with gently sloping hills 
with rare bedrock exposures (Qrc).

habitat Cover type of the nest site or location from land-cover GIS layer: 1) barren, 2) dwarf scrub, 3) shrub, and 4) all other cover 
types.

height Height of nest site or location above the Colville River as determined from DEM.
productivity Average productivity of nest site based on number of years the nest site was occupied or estimated average productivity of 

the location determined from the raster developed from the average productivity model. 
slope Slope (steepness) of nest site or location.
subgeology Sub surficial geology type of the nest site or location: 1) lower Cretaceous rocks (lK), 2) lower Cretaceous continental 

deposits (lKc), 3) lower Tertiary continental deposits (lTc), 4) upper Cretaceous rocks (uK), 5) upper Cretaceous 
continental deposits (uKc), 6) upper Tertiary rocks (uT). We combined sub surficial geology into rocks or continental 
deposits categories for intensity of use. 

waterarea Total area of prey habitat cover types ≤ 3 km of nest site or location.
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Results

Arctic peregrine surveys

We detected Arctic peregrines at 108 unique nest-site loca-
tions during 24 years of surveys. Estimates of detection prob-
ability, as determined from previous work, were > 0.8 for 
the first survey in all years except 1982, when it was 0.7, and 
slightly lower for the second survey (Bruggeman et al. 2016). 
Total number of times nest sites were occupied over 24 years 
ranged from 1–24 (mean = 12.0; SE = 0.655). The number of 
nest sites at which we detected Arctic peregrines ranged from 
28 in 1981, 1982, and 1983, to 69 in 2001 (mean = 52.5; 
SE = 2.89, n = 24). Total maximum number of adult Arctic 
peregrines enumerated during surveys increased during the 
24-year survey period, ranging from 27 birds in 1982 to 121 
birds in 1998 (mean = 84.2; SE = 5.72, n = 24). Productivity 
of individual nest sites ranged from 0–4 young (mean = 0.604; 
SE = 0.023; n = 2592 nest sites). Productivity was negatively 
correlated with year (p < 0.001) when not accounting for 
repeated territory observations, and autocorrelation function 
(ACF) values ranged from 0.010–0.126 over 24 years with 
minimum and maximum ACF values occurring at time lags 
of 11 years and 2 years, respectively (Supplementary material 
Appendix 1 Fig. A1). We summarize values of covariates used 
in modeling intensity of nest-site use in Table 2.

Predicting average productivity

The model of average productivity with highest 
adjusted-R2 value (0.204) included aspect, elevgain, geol-
ogy and subgeology covariates (Table 3) with R2 = 0.286 
(F11,96 = 3.5, p < 0.001). The model with the sec-
ond highest adjusted-R2 value (0.203) also contained 
aspect, geology and subgeology covariates, but included 
height instead of elevgain with R2 = 0.285 (F11,96 = 3.5, 
p < 0.001). Correlation between model-predicted aver-
age productivity (productivitymodel) and observed average 
productivity (productivitysurveys) recorded in 108 nest sites 
during surveys was R2 = 0.246 (F1,106 = 34.6, p < 0.001) 
with a line-of-best-fit productivitymodel = 0.799 + 0.277 × 
productivitysurveys. Model-predicted average productivity 

ranged from 0.077–3.05 (mean = 1.32; SD = 0.612; 
n = 12 748 765) across the sampling universe (Fig. 2). 
Annual average productivity was positively correlated with 
the number of years the nest site was occupied (Fig. 3A; 
p = 0.019, F1,106 = 5.71). However, there was no correla-
tion between the variance of annual average productiv-
ity and the number of years the nest site was occupied  
(Fig. 3B; p = 0.758, F1,96 = 0.095).

Predicting and mapping intensity of nest-site use

We found ZINB models had the lowest AIC values among 
best-approximating models of intensity of nest-site use 
for all four distributions evaluated. There was one best-
approximating model (AIC = 1329, w = 0.791) that included 
aspect, elevgain, habitat, productivity, slope, subgeology and 
waterarea covariates for both the Poisson and binomial 
model components (Table 4). For the Poisson component, 
productivity, slope, and north and south aspect had 95% con-
fidence intervals (CI) that did not include 0, whereas water-
area, west aspect, and dwarf scrub habitat had 95% CI that 
contained, but were not centered on, 0 (Table 4). All seven 
covariates for the binomial component had 95% CI that 
did not include 0 (Table 4). There were no other competing 
models of intensity of nest-site use with ΔAIC < 2. The min-
imum AIC among models without productivity was 1341, 
indicating inclusion of the covariate improved the models.

Model-predicted intensity of Arctic peregrine nest-site 
use ranged from 0–17.5 (mean = 0.005; SD = 0.111, n = 12 
748 765) across the sampling universe (Fig. 4,; see Supple-
mentary material Appendix 2 for more detailed maps). 
Along the upriver portion of the Colville River in our study 
area, most areas with highest predicted intensity of use were 
isolated cliffs and bluffs that were previously used by Arc-
tic peregrines as nest sites (Fig. 4). However, there were 
several upriver areas not previously occupied by Arctic per-
egrines, including some farther from the river, which had a 
higher predicted intensity of use (Fig. 4). Downriver, areas 
with highest predicted intensity of use were more extensive 
and located along larger cliffs and bluffs, including those 
previously occupied by Arctic peregrines (Fig. 5). Of the 

Table 2. Ranges, means, and standard errors for continuous 
covariates used to model intensity of Arctic peregrine falcon nest-
site use along the Colville River, AK, USA during 1981–2002, 2005 
and 2011. Summary statistics are separated into locations used by 
Arctic peregrine falcons as nest sites (i.e. nest sites observed during 
surveys) and locations classified as available for nesting. Covariates 
are defined in Table 1.

Covariate Range Mean SE

Used nest sites
elevgain 0.714–129 m 35.4 m 2.50
height 0–114 m 32.0 m 2.45
productivity 0–4 young 1.13 young 0.070
slope 0.722–51.1° 21.8° 1.10
waterarea 0.880–9.71 km2 3.55 km2 0.191

Available nest sites
elevgain –69.2–186 m 21.9 m 0.088
height 0–182 m 20.1 m 0.087
productivity 0.077–3.04 young 1.32 young 0.002
slope 0–56.0° 2.34° 0.011
waterarea 0–6.09 km2 0.932 km2 0.002

Table 3. Covariate coefficient estimates and 95% confidence inter-
vals from the best regression model of factors related to average 
productivity of Arctic peregrine falcon nest sites along the Colville 
River, AK, USA during 1981–2002, 2005 and 2011. Covariates are 
defined in Table 1.

Covariate Estimate 95% confidence interval

Intercepta 1.40 0.476, 2.33
aspect = north –0.293 –0.696, 0.110
aspect = south 0.042 –0.339, 0.422
aspect = west –0.471 –1.06, 0.115
elevgain 0.004 –0.002, 0.009
geology = Qrb 0.124 –0.358, 0.606
geology = Qrc 0.890 0.182, 1.60
subgeology = lKc 0.145 –0.688, 0.978
subgeology = lTc –0.855 –1.97, 0.255
subgeology = uK –0.470 –1.38, 0.437
subgeology = uKc –0.624 –1.52, 0.276
subgeology = uT –0.225 –1.27, 0.818

aIntercept term includes aspect = east, geology = Qfp, and subgeol-
ogy = lK.
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108 nest-site locations, between 17.6–21.3% were classified 
as high observed use/high predicted use and 33.3% were 
classified as low observed use/low predicted use (Supplemen-
tary material Appendix 1 Table A1).

Discussion

We developed an empirical model of Arctic peregrine nest-
site distribution by incorporating a measure of productivity 

(a surrogate of fitness) to identify areas of higher predicted 
intensity of nesting use in our study area along the Colville 
River, which provides nesting habitat for ~25% of Alaska’s 
migratory Arctic peregrine population. Our work provides 
an example of using an alternative approach with count data 
to model and map a species’ distribution, which is often 
done using logistic regression analyses based on point loca-
tion data (Aarts et al. 2012). Depending on the extent of 
logistic regression analyses and whether they used repeated 
measures techniques to account for multiple observations at 

Figure 2. Examples of model-predicted average productivity for Arctic peregrine falcon nests along the Colville River in the Colville River 
Special Area, AK, USA. The maps depict examples from the (A) western upriver, and (B) eastern downriver portions of the study area and 
sampling universe along the Colville River.
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Figure 3. Relationships between (A) annual average productivity (no. of young) and the number of years the nest site was occupied, and  
(B) variance of annual average productivity and the number of years the nest site was occupied for Arctic peregrine falcon nests along the 
Colville River in the Colville River Special Area, AK, USA.

Table 4. Covariate coefficient estimates and 95% confidence intervals (CI) from the best-approximating zero-inflated negative binomial 
regression model of factors related to intensity of Arctic peregrine falcon nest-site use along the Colville River, AK, USA during 1981–2002, 
2005 and 2011. Estimates for the Poisson (count) component and binomial (zero-inflated) component are provided for each covariate. 
Covariates are defined in Table 1.

Covariate Poisson component estimate (95% CI) Binomial component estimate (95% CI)

Intercepta 1.77 (1.25, 2.30) 13.4 (11.9, 14.9)
aspect = north –0.508 (–0.912, –0.104) 0.794 (0.072, 1.52)
aspect = south –0.449 (–0.840, –0.059) 1.80 (1.02, 2.59)
aspect = west –0.466 (–0.979, 0.046) –1.18 (–2.11, –0.243)
elevgain 0.003 (–0.002, 0.008) –0.021 (–0.030, –0.012)
habitat = dwarf scrub –0.245 (–0.537, 0.047) 0.829 (0.168, 1.49)
habitat = other –0.096 (–0.719, 0.528) 3.40 (1.85, 4.94)
habitat = shrub –0.086 (–0.500, 0.329) 0.967 (0.163, 1.77)
productivity 0.324 (0.115, 0.532) –0.829 (–1.43, –0.228)
slope 0.015 (0.001, 0.030) –0.181 (–0.203, –0.159)
subgeology = rocks 0.078 (–0.240, 0.397) 3.14 (2.08, 4.20)
waterarea 0.073 (–0.001, 0.148) –2.72 (–3.06, –2.38)

aIntercept term includes aspect = east; habitat = barren; subgeology = deposits.
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the same location, they may not impart extra importance to 
locations used more than once or, in our case, that had rela-
tively high productivity. Our intensity of nest-site use model 
incorporated productivity data, which resulted in model 
predictions of areas both likely to be occupied by Arctic per-
egrines and where there was higher nest site productivity to 
address the role of fitness in resource selection. Incorporating 
this fitness metric improved the predictive capability of the 
model, supporting our original supposition.

Selection of habitat and resources by animals should 
maximize fitness, which is generally measured empiri-
cally through reproductive success or adult survival 
(Gaillard et al. 2010), but can also be assessed through 
mortality (predation) risk (Nielsen et al. 2010), juvenile 
survival (Streby et al. 2014a, 2014b), litter (clutch) size 
(Forsman et al. 2007), or daily nest survival (Chalfoun and 
Martin 2007). The value of incorporating fitness parameters 
(or surrogates of fitness) into species distribution models 
addresses the possibility there is not a positive relationship 

between an individual’s selection of resources and their 
associated benefits (i.e. maladaptive selection). Relying on 
animal density alone to provide a measure of habitat qual-
ity or the habitats that confer the highest fitness may be 
problematic because density, resource availability, and indi-
vidual fitness interact to determine an animal’s choice of 
habitats and associated habitat quality (Van Horne 1983, 
Mosser et al. 2009). We used nest-site productivity as a sur-
rogate of fitness because we did not have site-specific data 
on either juvenile survival (i.e. recruitment) or number of 
young fledged per nest (i.e. nest success) owing to logisti-
cal challenges due to the large length of river surveyed and 
timing of surveys to determine fledgling survival or success 
of all nest sites. Because nest-site productivity provided 
only a measure of the number of young in the nest at the 
time of the survey and not the number of young raised to 
independence in a breeding season, fledgling survival would 
have been a more accurate surrogate of individual fitness 
(Streby et al. 2014b).

Figure 4. Examples of predicted intensity of Arctic peregrine falcon nest-site use and observed nest-site locations for two western, upriver 
segments of the Colville River in the Colville River Special Area, AK, USA. Note the spatial separation of observed nest-site locations, and 
overlap between observed nest-site locations and areas of higher and low predicted use.
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Individual fitness components may be highly important 
to nest-site selection with the selection process influenced by 
abiotic and biotic factors acting across multiple spatial scales 
(Newton 1985, Clark and Shutler 1999, Martínez et al. 
2003). Minimizing predation risk, protecting the nest 
from inclement weather, and having sufficient nearby prey 
resources are factors that are related to site quality and may 
affect an individual’s choice of nest-site location (Møller 
1988, Martin 1995, Kolbe and Janzen 2002). Occupancy 
of nest sites has been associated with site quality, which may 
be related to individual fitness (Sergio and Newton 2003), 
and it is likely the Arctic peregrine nest sites used most often 
during our study and areas predicted to have higher use by 
our model are indicative of higher-quality habitat, as evi-
denced by the positive relationship between average produc-
tivity and number of years the site was occupied (Fig. 3A). 

However, the implications of nest-site choice on fitness are 
complicated and may involve tradeoffs to balance opposing 
selection pressures (Streby et al. 2014b), resulting in choices 
among individual fitness components to maximize total fit-
ness (Schluter et al. 1991, Chalfoun and Schmidt 2012). 
Total reproductive fitness for an individual or breeding pair 
is dependent on fledgling survival after a nest is successful 
and, depending on the species, a female may make multiple 
attempts at nesting to produce a successful nest. Arctic per-
egrines are not known to make multiple nesting attempts 
within one breeding season in the CRSA, so the results  
of our study and previous work (Bruggeman et al. 2015, 
2016, Swem and Matz 2018) lend insight into relationships 
between abiotic and biotic factors and nest-site decisions of 
breeding pairs to maximize total fitness. In addition to steeper 
slopes and greater area of surrounding prey habitat, these 

Figure 5. Examples of predicted intensity of Arctic peregrine falcon nest-site use and observed nest-site locations along two eastern, down-
river segments of the Colville River in the Colville River Special Area, AK, USA. Note the large segments of higher predicted intensity of 
nest-site use, overlap between observed nest-site locations and areas of higher predicted use, and proximity of observed nest-site locations 
to one another.
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factors include a lack of snow for establishing a nest site early 
in the season to increase the likelihood of nest success, locat-
ing nests on cliffs situated higher above the Colville River to 
reduce predation risk on juveniles and increase advantage in 
capturing prey, and establishing nest sites in locations where 
warmer temperatures may minimize negative effects of cold 
rain and wind on juvenile survival (Franke et al. 2010, Anc-
til et al. 2014, Bruggeman et al. 2015).

Spatial patterns of higher predicted Arctic peregrine use 
in the CRSA were generally consistent with observations of 
nesting habitat used most frequently during surveys. The 
western, upriver portion of the Colville River in our study 
area was characterized by smaller, discrete, separated cliffs 
that often only provided sufficient space for one nesting 
pair (Swem and Matz 2018). Upriver, surveyors occasion-
ally found nest sites on small outcroppings expected to be 
unsuitable for nesting. In contrast, larger more extensive 
cliffs and escarpments supporting multiple nesting pairs 
typified the eastern downriver segment of the Colville River. 
Nesting density of Arctic peregrines was also greater down-
river compared to upriver (Fig. 4, 5), suggesting downriver 
cliffs offered some combination of greater resource avail-
ability, better access to nest sites, higher quality habitat, or 
greater fitness benefits. Our models of predicted average 
productivity (Fig. 2) and intensity of nest-site use (Fig. 4, 
5) support these observations with areas of higher predicted 
use being fewer in number, smaller in size, and more spa-
tially separated upriver relative to downriver. There were also 
more nest-site locations upriver than downriver for which 
the model did not predict use and it is possible that fac-
tors other than those related to productivity and nest-site use 
(e.g. factors related to fledgling survival) influenced nest-site 
selection at these locations.

With inclusion of productivity data into analyses to 
account for fitness, our model correctly predicted between 
51–55% of nest-site locations that had high and low 
observed use combined. There are limitations of our study 
that may explain why our best-approximating model did not 
accurately predict ~45% of nest-site use. First, factors that 
we could not quantify, such as competition for nest sites, 
territory size, biotic characteristics (e.g. prey abundance), 
or presence of snow early during the nesting period, may 
have influenced nesting decisions. Arctic peregrines require a 
snow-free substrate at nest scrapes and it is possible observed 
nest-site locations not predicted to have use were selected 
because other potential sites were covered with snow when 
nest-site selection occurred. Previous work documented 
Arctic peregrine apparent survival and arrival rates on cliffs 
were higher during years with earlier snowmelt and milder 
winters based on broad-scale climate patterns (Brugge-
man et al. 2015). Second, the CRSA on the North Slope 
of Alaska is remote and GIS layers for the region are gener-
ally updated less frequently and available at lower resolution 
than other areas in the US. Because Arctic peregrines and 
other birds may select nest sites based on fine-scale attributes 
(Brambilla et al. 2006), we were not able to fully incorpo-
rate these factors in our modeling. Finally, we were not able 
to incorporate detection probability into our average pro-
ductivity and intensity of nest-site use models. Although 
detection probability was high, especially during the first 

survey (Bruggeman et al. 2016), our estimates of average 
productivity and intensity of nest-site use could be biased 
low, resulting in underestimation of both variables.

Improving understanding of factors affecting spatial 
dynamics of a species and visualizing this distribution using 
GIS-based mapping has become a valuable tool to assist with 
conservation for wildlife managers. Incorporating fitness (or 
surrogates of fitness) parameters has increasingly become an 
important part of species distribution modeling to better 
understand the roles of reproductive success, adult and juve-
nile survival, and mortality risk in affecting habitat selection 
(Gaillard et al. 2010). However, acquiring the data needed 
to include fitness parameters in models may be resource 
intensive. Therefore, there are tradeoffs between the benefit 
of using fitness-related data in species distribution analyses 
and the added cost for data collection. Our work provides an 
example of applying a long-term dataset of occupancy and 
productivity to model, predict, and map nest-site distribu-
tion of a once endangered population during its recovery. 
Our models provide a means of identifying factors associated 
with occupancy and productivity, which is information that 
can help target conservation efforts where they are likely to 
be most effective.

Management implications

The CRSA Management Plan provides guidance for the 
protection of Arctic peregrine nest sites, nesting cliffs, 
and foraging habitat that governs all nest sites and habitat 
under the same regulations (USDOI 2008). For example, 
a 1600-m buffer exists along the Colville River in which no 
permanent oil and gas facilities and related development are 
allowed (USDOI 2008). Our results identified areas along 
the Colville River predicted to have higher intensity of use 
for Arctic peregrine nesting to help focus efforts of contin-
ued protection and preservation of these cliffs, especially 
those with frequently occupied and highly productive nest 
sites. For cliffs with no predicted use, particularly where no 
observed nest sites have been located during surveys, con-
siderations could be given for relaxing some protective mea-
sures after evaluating historical and current Arctic peregrine 
use of the cliff and associated nest-site productivity. In areas 
where observed Arctic peregrine nest-site locations over-
lapped those of higher predicted use, management actions 
are likely to have the most impact on population-level pro-
cesses. In contrast, areas where observed nest-site locations 
overlapped those of low predicted use may have lower con-
servation priority and be where management actions may 
have less effect on population dynamics.

Arctic peregrines failed to produce any young at 11 of 
the 108 nest-site locations during the study, suggesting these 
sites had minimal or no contribution at the population level. 
These locations were distributed along the entire Colville 
River in our study area and not necessarily concentrated 
downriver where nesting density was higher and Arctic per-
egrines may have been more likely to establish alternative 
nest sites during years of greater competition. The broad 
distribution of unproductive nest-site locations, as opposed 
to being concentrated along one stretch of river, may make 
relaxing protective measures challenging because of potential 
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negative impacts to nearby, productive nest sites. This is 
especially relevant downriver where some unproductive nest 
sites occurred among higher densities of high use, produc-
tive nest sites. Because a substantial number of observed nest 
sites were not correctly classified in our analysis, we do not 
recommend changing regulations for cliffs with observed, 
productive nest sites that were predicted as having low inten-
sity of use. We classified low intensity of use for 49 observed 
nest-site locations, of which the model predicted 36 to have 
low use. The majority of the 36 low-use nest sites had low 
total productivity (< 10 young) and average productiv-
ity (< 2 young) even if occupied several years, suggesting 
these locations or the birds that occupied them were of poor 
quality.

Regulation changes around consistently unproductive 
nest-site locations and those not frequently occupied may 
have minimal population-level impacts, but additional 
assessments of disturbance on Arctic peregrines in the CRSA 
may be warranted. It is also possible unproductive nest sites 
could be productive in future years under different climate 
scenarios or Arctic peregrine population sizes. Our models 
were based on data collected during a period when fossil fuel 
exploration was minimal and human activity and potential 
related disturbance were limited to occasional recreational 
boaters and natural resources field workers. The effects of 
human activity on birds vary widely depending on the spe-
cies, a particular population’s extent of habituation to the 
activity, type of human activity (e.g. vehicle or foot travel), 
timing of activity during the phase of the breeding season 
(i.e. courtship, incubation, fledging), and degree of cover 
provided by vegetation or topography (Boyle and Samson 
1985, Richardson and Miller 1997, Brambilla et al. 2004). 
Our work provides information related to spatial variation 
in nesting for the CRSA Arctic peregrine population, and 
our model provides a tool to help minimize potential nega-
tive impacts of human activity on a breeding Arctic pere-
grine population while also identifying areas where relaxing 
restrictions on human activity will potentially have minimal 
negative impacts. There is potential to use this tool for other 
populations with long-term datasets that include fitness or 
surrogate fitness parameters.
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