Open Access
How to translate text using browser tools
17 December 2012 Developmental floral morphology of Syngonium in the context of the tribe Caladieae (Araceae)
Denis Barabé, Christian Lacroix, Marc Gibernau
Author Affiliations +
Abstract

The floral development of Syngonium angustatum is analysed in the context of a recently published molecular phylogeny of the Araceae. The initiation of discoid floral primordia occurs acropetally on the surface of the inflorescence. Female flowers, atypical bisexual flowers, sterile male flowers and male flowers are inserted on the same phyllotactic spirals on the spadix. Stamen primordia are initiated simultaneously on the periphery of more or less circular floral primordia. There are four stamens per flower (rarely three). In a synandrium, the fusion of stamens occurs very early during their developmental cycle. In some flowers one or two stamens remain free. The staminodes are also initiated on the periphery of the discoid floral primordium and their number varies from four to six. The growth of the fused staminodes will eventually form a longitudinal cavity in the centre of the mature synandrode. On the synandrodes located near the female zone, one or two staminodes remain free during development. No atypical bisexual flowers were observed on the inflorescence of Syngonium. The presence of a few calcium oxalate crystals was observed on the surface of all types of flowers. All the atypical flowers located at the base of the sterile zone corresponded to sterile male flowers and resulted from a more or less random disorganisation of the typical structure of a synandrode. In the Aroideae, free stamens or staminodes represent a plesiomorphic condition. The association of synandria and synandrodes is present in all early diverging genera of the tribe Caladieae and could represent the ancestral state. It is not clear if free stamens have evolved once or twice in the tribe Caladieae, both scenarios are possible.

See the PDF.

References

1.

D. Barabé 2013 [in press]: Aroid floral morphogenesis in relation to phylogeny. — In: P. Wilkins & S. Mayo (ed.), Early events in monocot evolution. — Cambridge: University Press. Google Scholar

2.

D. Barabé & C. Bertrand 1996: Organogénie florale des genres Culcasia et Cercestis (Araceae). — Canad. J. Bot. 74: 898–908. Google Scholar

3.

D. Barabé & C. Lacroix 1999: Homeosis, morphogenetic gradient and the determination of floral identity in the inflorescences of Philodendron solimoesense (Araceae). — Pl. Syst. Evol. 219: 243–261. Google Scholar

4.

D. Barabé & C. Lacroix 2002: Aspects of floral development in Caladium bicolor (Araceae). — Canad. J. Bot. 80: 899–905. Google Scholar

5.

D. Barabé & C. Lacroix 2008: Developmental morphology of the flower of Anthurium jenmanii: a new element in our understanding of basal Araceae. — Botany 86: 45–52 Google Scholar

6.

D. Barabé , C. Lacroix & M. Gibernau 2003: Development of the flower and inflorescence of Arum italicum (Araceae). — Canad. J. Bot. 81: 622–632. Google Scholar

7.

D. Barabé , C. Lacroix & B. Jeune 2004[a]: The game of numbers in homeotic flowers of Philodendron (Araceae). — Canad. J. Bot. 82: 1459–1467 Google Scholar

8.

D. Barabé , C. Lacroix & B. Jeune 2008: Quantitative developmental analysis of homeotic changes in the inflorescence of Philodendron (Araceae). — Ann. Bot. 101: 1027–1034. Google Scholar

9.

D. Barabé , C. Lacroix , M. Chouteau & M. Gibernau 2004[b]: On the presence of extracellular calcium oxalate crystals on the inflorescence of Araceae. — Bot. J. Linn. Soc. 146: 181–190. Google Scholar

10.

D. Barabé , C. Lacroix , A. Bruneau , A. Archambault & M. Gibernau 2004[c]: Floral development and phylogenetic position of Schismatoglottis (Araceae). — Int. J. Pl. Sci. 165: 173–189 Google Scholar

11.

M. E. Barahona Carvajal 1977: Estudio morfologico comparativo de las inflorescencias de dos especies de Araceae: Anthurium denudatum Engler y Philodendron radiatum Schott. — Rev. Biol. Trop. 25: 301–333. Google Scholar

12.

P. C. Boyce & T. B. Croat 2011: The list of Araceae, totals for published and estimated number of species in aroid genera. — Published at  http://www.aroid.org/genera/111109uberlist.pdf [accessed 17 July 2012]. Google Scholar

13.

M. Buzgó 1994: Inflorescence development of Pistia stratiotes (Araceae). — Bot. Jahrb. Syst. 115: 557–570. Google Scholar

14.

L. I. Cabrera , G. A. Salazar , M. W. Chase , S. J. Mayo , J. Bogner & P. Dávila 2008: Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and non-coding plastid DNA. — Amer. J. Bot. 95: 1153–1165. Google Scholar

15.

W. N. Carvell 1989: Floral anatomy of the Pothoideae and Monsteroideae (Araceae). — Thesis, Department of Botany, Miami University, Oxford, Ohio. Google Scholar

16.

M. Chouteau , D. Barabé & M. Gibernau 2007: Thermogenesis in Syngonium (Araceae). — Canad. J. Bot. 85: 184–190. Google Scholar

17.

N. Cusimano , J. Bogner , S. J. Mayo , P. C. Boyce , S. Y. Wong , M. Hesse , W. L. A. Hetterscheid , R. Keating & J. C. French 2011: Relationships within the Araceae: comparison of morphological patterns with molecular phylogenies. — Amer. J. Bot. 98: 654–668. Google Scholar

18.

A. Engler & K. Krause 1912: Araceae-Philodendroideae-Philodendreae. — Pp. 1–134 in: A. Engler (ed.), Das Pflanzenreich 55. — Leipzig: Engelmann [Reprinted 1966, J. Cramer]. Google Scholar

19.

R. H. Eyde , D. H. Nicolson & P. Sherwin 1967: A survey of floral anatomy in Araceae. — Amer. J. Bot. 54: 478–479. Google Scholar

20.

V. R. Franceschi & H. T. Horner 1980: Calcium oxalate crystals in plants. — Bot. Rev. 46: 361–427. Google Scholar

21.

J. C. French 1985: Patterns of endothecial wall thickenings in Araceae: subfamilies Calloideae, Lasioideae and Philodendroideae. — Bot. Gaz. 146: 521–533. Google Scholar

22.

S. Fukai 2004: Floral initiation and development of the sex-changing plant Arisaema sikokianum (Araceae). — Int. J. Pl. Sci. 165: 739–744. Google Scholar

23.

M. Hotta 1971 : Study of the family Araceae: general remarks. — Jap. J. Bot. 20: 269–310. Google Scholar

24.

S. J. Mayo 1986: Systematics of Philodendron Schott (Araceae) with special reference to inflorescence characters. — PhD Thesis, Department of Botany, University of Reading, UK. Google Scholar

25.

S. J. Mayo 1989: Observations of gynoecial structure in Philodendron (Araceae). — Bot. J. Linn. Soc. 100: 139–172. Google Scholar

26.

S. J. Mayo , J. Bogner & P. C. Boyce 1997: The genera of Araceae. — Kew: Royal Botanic Gardens. Google Scholar

27.

H. Uhlarz 1982: Typologische und ontogenetische Untersuchungen an Spathicarpa sagittifolia Schott (Araceae): Wuchsform und Infloreszenz. — Beitr. Biol. Pflanzen 57: 389–429. Google Scholar

28.

H. Uhlarz 1986: Zum Problem des “blattlosen Sprosses”: Morphologie und Anatomie der Infloreszenz von Pinella tripartita (Blume) Schott (Araceae, Aroideae). — Beitr. Biol. Pflanzen 61: 241–282. Google Scholar
© 2012 BGBM Berlin-Dahlem.
Denis Barabé, Christian Lacroix, and Marc Gibernau "Developmental floral morphology of Syngonium in the context of the tribe Caladieae (Araceae)," Willdenowia 42(2), 297-305, (17 December 2012). https://doi.org/10.3372/wi.42.42216
Published: 17 December 2012
KEYWORDS
aroids
flower
inflorescence
oxalate crystals
phylogeny
Back to Top