Translator Disclaimer
1 November 2017 Lignicolous species of Helotiales associated with major vegetation types in the Canary Islands
Author Affiliations +
Abstract

A historical worldwide overview of the family Helotiaceae in a broad sense and a revision of its members in the Canary Islands are presented. Nine lignicolous species are described in detail (Ascocoryne cylichnium, A. sarcoides, Chlorociboria aeruginascens, Cyathicula cyathoidea, C. hysterioides, Durella connivens, Pseudohelotium sordidulum, Strossmayeria basitricha and Velutarina rufoolivacea). The species of the genus Ascocoryne are revised and corrected. The genera Durella, Pseudohelotium and Velutarina are reported for first time for the Canary Islands, each with one species, as is Cyathicula hysterioides. Species considered closely related are briefly discussed.

Citation: Quijada L., Ribes M., Negrín R. & Beltrán-Tejera E. 2017: Lignicolous species of Helotiales associated with major vegetation types in the Canary Islands. — Willdenowia 47: 271–291. doi:  https://doi.org/10.3372/wi.47.47310

Version of record first published online on 20 November 2017 ahead of inclusion in December 2017 issue.

Introduction

Helotium Pers. (1801) is the type genus of Helotiaceae, a family established by Rehm (1896) as “Familie Helotieae”, later correctly spelled by Lindau (1893). In his concept, Rehm split the family into two groups: (1) “Euhelotieae” without hairs, and (2) “Trichopezizeae” with hairs. Despite the quality of his work, his classification was avoided by subsequent researchers, mainly because he did not accept distinctions made previously by other authors, particularly the difference between inoperculate and operculate asci (Boudier 1885).

Since the family Helotiaceae was established, several nomenclatural problems have arisen due to the type genus Helotium Pers. (1801) vs Helotium Tode (1790) : Fr. (= Omphalina Quél.). Korf (in Ainsworth & al. 1973), in his revision of discomycetes, realized the illegitimacy problem of Helotiaceae, and decided to use instead the name Leotiaceae Corda (1842), a family with only one genus (Leotia Pers.), previously included in Geoglossaceae Corda. Not all authors accepted Leotiaceae as Korf suggested, and between 1944 and 1996 morphological and molecular evidence (Chadefaud 1944; Verkley 1994, 1995; Gargas & Taylor 1995; Landvik 1996) turned out to support the opinion that Leotia was clearly different from all other genera of inoperculate discomycetes treated traditionally in Helotiaceae. Later, Korf & al. (1996) proposed to conserve the family name Helotiaceae against the earlier names Bulgariaceae Fr., Cenangiaceae Rehm, Cordieritidaceae (Sacc.) Sacc. and Heterosphaeriaceae Rehm and also suggested that Leotiaceae should not be synonymized with Helotiaceae. In a Report of the Nomenclature Committee for Fungi (Gams 1999), Korf & al.'s proposal was reported as having received only positive votes; therefore the conservation of Helotiaceae against the four older family names was recommended.

Until very recently, the morphological concept used to circumscribe Helotiaceae was more or less the same as that used in the past century (Nannfeldt 1932), and Helotiaceae comprised 117 genera and 826 species (Kirk & al. 2008). General books on Ascomycota with keys to members of Helotiales (Korf in Ainsworth & al. 1973; Dennis 1978; Hansen & Knudsen 2000; Pande 2008) have one detail in common: the family is always placed in the last step of the key. Curiously, these keys lead us to all the other families thanks to morphological characteristics, but we arrive at Helotiaceae only after discarding all the other families. This is clear evidence for a “waste basket” family, which includes a lot of helotialean genera with uncertain position. Molecular tools have evidenced this waste basket nature: Wang & al. (2006) showed for the first time that genera considered to belong in Helotiaceae were distributed in seven different clades, and none of the supported clades was called Helotiaceae. Later phylogenies with members of the family confirmed this result (Han & al. 2014; Johnston & al. 2014). Very recently, Baral (2016) proposed a much narrower concept of the family Helotiaceae, which has reduced the number of accepted genera to 18 and is based on a combination of morphological and phylogenetic affinities. Up to now, general databases such as Index Fungorum or MycoBank have not adopted these systematic changes. In the present paper, we have treated the family in its broader concept (Helotiaceae s.l.) by including all the above-mentioned families.

The aim of this work is to contribute to the knowledge of Helotiaceae s.l. in the Canary Islands, where nine genera and 12 species have been reported (Beltrán-Tejera 2010). Some genera and species are presently under study and were previously confused within this archipelago: (1) Hymenoscyphus albidus (Gillet) W. Phillips turned out to include also H. calyculus (Fr.) W. Phillips; (2) Claussenomyces Kirschst. is not placed in Helotiaceae but in Tympanidaceae (for more details see Baral 2015, 2016); (3) the collection reported under Tympanis confusa Nyl. actually belongs to Claussenomyces; and (4) great confusion exists with the genus Xylogramma Wallr.; for more details see remarks under Durella connivens (Fr.) Rehm. For these reasons, the following species reported to the Canarian archipelago have not been included in this work and will be published separately in other papers in preparation: Claussenomyces canariensis Ouell. & Korf, Hymenoscyphus albidus, H. caudatus (P. Karst.) Dennis, H. macroguttatus Baral & al., Tympanis confusa and Xylogramma sticticum (Fr.) Wallr..

Material and methods

Descriptions of sampled vegetation and methods to study the collections are based on Quijada & al. (2015). All samples were collected on wood and/or bark of detached branches. All specimens were photographed in the fresh state. Distribution of treated species was explored using the literature cited in the References of this article, as well as The Global Biodiversity Information Facility (GBIF,  http://www.gbif.org/). Specimens are deposited in the Mycological Section, Herbarium of the University of La Laguna (TFC). Colour coding refers to Anonymous (1976). Municipalities and place names for localities were looked up in IDECanarias visor 3.0 ( http://visor.grafcn.es/visorweb/).

Abbreviations: * = living state; † = dead state; CR = aqueous congo red; CRB = aqueous cresyl blue; H2O = water; idem = the same; IKI+ = pore amyloid in MLZ or LUG with or without KOH pre-treatment; KOH = potassium hydroxide; LBs = lipid bodies; LCI = lipid content index according to Baral & Marson (2005); LUG = Lugol's solution; MLZ = Melzer's reagent; t. = textura; VBs = vacuolar bodies.

Main collectors: CQ = Camilo Quijada; EBT = Esperanza Beltrán-Tejera; LQ = Luis Quijada; MR = Miguel Ribes; RN = Rubén Negrín.

Results

Ascocoryne cylichnium (Tul.) Korf in Phytologia 21: 202. 1971.-Fig. 1.

Description —Apothecia 2-5(-6) mm in diam., to 2 mm high, discoid to cupulate with narrow attachment, disc depressed at centre, sparse to gregarious, superficial, subsessile, medium red-brown (43.m.rBr) to vivid deep red (14.v.deepRed), margin smooth and slightly lobate; receptacle with a wrinkled and slightly white dusty surface. Asci *(147.5-) 154-162.5(-167.5) × 10-11.3(-12) µm, †(106-)11-127 × 6-8 µm; cylindric-clavate, 8-spored, 2-seriate, pars sporifera *41–58.5 µm, IKI+; arising from croziers. Ascospores *(14-)16-17.5(-18.5) × 4.5-5.5 µm, †12.5-16 × 2-4 µm; ellipsoid to fusoid, straight to rarely slightly curved, inequilateral, 0-3-septate (aseptate in living ascus), hyaline, thinwalled, multiguttulate, containing many small LBs, LCI = (45-)60-75(-90)%; after release or inside dead asci producing globose to ellipsoid conidia of *1.5-2 × 1.3-1.8 µm directly from ascospore wall, not forming moniliform chains. Paraphyses slightly to strongly capitate, 3- or 4-septate; terminal cell *19-32 × 3.5-5 µm, basal cell *13-18 × 1.1-1.5 µm; simple to rarely bifurcate near base, thin-walled, with one or several large yellowish grey (93.yGrey) guttules in terminal cell (VBs). Ectal excipulum from base to margin of t. globulosa-angularis to prismática, *170–240 µm thick at base and middle flanks; *30–110 µm thick at margin and upper flank; hyaline to light grey-red-brown (45.1.gy.rBr), slightly gelatinized, with abundant crystals and druses. Ectal cells *(15-)22-30(-44) × (8.5-)15-19(-24) µm at middle flank, wall thickness *0.5-1 µm; *(9.5-)11.5-13(-16.5) × (5-)8.5-10.5(-14) µm at margin. Medullary excipulum with rather wide hyphae and slightly gelatinized.

Fig. 1.

Morphological features of Ascocoryne cylichnium. — A: apothecia; B: excipular tissues in section; B3, 4: crystals and druses; C: asci; D: paraphyses; E: ascospores. — Scale bars: A1–4 = 1000 µm; B1–3, C1, 2 = 50 µm; B4, C5, D1–3, E1, 3 = 10 µm; C3, 4, E2 = 5 µm. — Mounted in: D3, E2 = CR; B1–4, C1–3, 5, D1, E1 = H2O; D2, E3 = KOH; C4 = MLZ. — All photos from TFC Mic. 20608.

f01_271.jpg

Distribution and ecology — In the N hemisphere in the Canary Islands (La Palma, Tenerife), Madeira, Europe (Austria, Denmark, Finland, France, Germany, Iceland, Ireland, Italy, Lithuania, Netherlands, Norway, Poland, Portugal, Russian Federation, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, United Kingdom), Asia (China, India, Japan, Korea, Taiwan) and North America (Canada, United States). In the S hemisphere in New Zealand and South America (Argentina, Chile). Growing on hardwood (Alnus Mill., Betula L., Carpinus L., Erica L., Fagus L., Fraxinus Tourn. ex L., Nothofagus Blume, Prunus L., Quercus L., Salix L., Sorbus L., Tilia L., Ulmus L.) and softwoods (Picea A. Dietr., Pinus L., Pseudotsuga Carrière). Occurring in all seasons, more abundantly in autumn (Beltrán-Tejera & al. 2009; Dennis 1956; Gamundí & Romero 1998; GBIF; Hansen & Knudsen 2000; Roll-Hansen & Roll-Hansen 1979).

RemarksAscocoryne cylichnium is one of the most frequently reported taxa in Helotiales (more than 1400 occurrences in GBIF). Although there exists a great confusion in the literature about A. cylichnium and A. sarcoides, Baral (in Baral & Marson 2005) showed striking differences between these two species based on vital taxonomy. Ascocoryne cylichnium can be differentiated based on its excipular tissues, showing an only slightly gelatinized medullary excipulum of broad hyphae, which includes crystals and druses (Fig. 1B3–4), the presence of many small lipid bodies in the ascospores (multiguttulate), and conidia produced directly on the ascospore wall without forming chains (compare Fig. 1E3 against Fig. 2E4–7). In the last classification proposed by Baral (2016) for Leotiomycetes, the genus was placed in the family Gelatinodiscaceae; for molecular details see Wang & al. (2006) and Johnston & al. (2014).

Specimens studiedSpain: Canary Islands: La Palma: San Andrés y Sauces, 28°46′35″N, 17°48′58″W, 825 m, hygric evergreen laurel forest, on unidentified wood, 28 Jan 1989, EBT & al. (TFC Mic. 3413). — Tenerife: Santa Cruz de Tenerife, Anaga Rural Park, Llanito de las Vueltas, 28°32′37″N, 16°13′36″W, 820 m, humid evergreen laurel forest, on detached wood of Prunus lusitanica subsp. hixa, 26 Apr 2014, RN (TFC Mic. 20608); idem, El Pijaral, 28°33′11″N, 16°11′18″W, 775 m, idem, 19 Feb 2011, LQ & al. (TFC Mic. 23124); idem, 17 Oct 2014, LQ, CQ & RN (TFC Mic. 21430); idem, on detached wood of Erica arborea, idem (TFC Mic. 21486).

Previously reported specimens reviewed and correctedSpain: Canary Islands: Tenerife: Los Silos, Teno Rural Park, La Corredera, 28°20′09″N, 16°49′45″W, 880 m, humid evergreen laurel forest, on unidentified wood, 21 Mar 1988, EBT & al.(TFC Mic. 3177, reported as Ascocoryne sarcoides in Beltrán-Tejera & al. 1989).

Ascocoryne sarcoides (Jacq.) J. W. Groves & D. E. Wilson in Taxon 16: 40. 1967. - Fig. 2.

Description — Apothecia 0.3–0.8 mm in diam., to 3 mm high, discoid to turbinate with broad attachment to shortly stipitate, caespitose (1–3 discs from same stipe), sparse to gregarious, gelatinous, superficial, medium pink (5.m.Pink) to deep purple-red (259.d.pR), margin smooth and slightly lobate; receptacle with wrinkled surface, stipe usually darker, vivid deep purple-red (260.v.d.pR) to black (267.Black). Asci *(146.6-)159-179(-194) × (10-)11-12.5 µm, †107-128 × 7.7-8.6 µm; cylindric-clavate, 8-spored, 2-seriate, pars sporifera *35–67 µm, IKI+; arising from croziers. Ascospores *(11.8-)13.8-15(-19) × (2.8-)4.6-5.7 µm, †(10.8-)11.8-13.5(-16.3) × 3-5 µm; ellipsoid to subcylindric, straight to slightly inequilateral, 0-3-septate, hyaline, thin-walled, oligoand multiguttulate (LBs), two large guttules (1.7–3 µm in diam.) surrounded by a great number of small drops (0.3–0.7 µm in diam.), LCI = (20-)30-45(-60)%; after release or into dead asci producing globose to obovoid conidia from germ tubes, usually located at both poles, conidia *2.1-2.8(-3.5) × 1.8-2.3 µm, forming moniliform chain. Paraphyses slightly to medium capitate or spatulate to sublageniform-moniliform, 5-7-septate; terminal cell *(11.8-)14.6-19.4(-23.6) × 1.8-2.6(-3.4) µm, basal cell *(6.1-)9.7-13.7(-20.4) × 1.4-2.2 µm; unbranched, thin-walled, with one or several large light grey (264.1.Grey) guttula at terminal cell (VBs). Ectal excipulum from base to margin of t. globulosa to t. angular, *148–342 µm thick at base and middle flanks; *65–173 µm thick at margin and upper flank; hyaline, medullary well delimited in a gelatinized t. intricata, without crystals or druses. Ectal cells *(10.3-)12.3-14(-18.5)×(6.2-)8-9.7(-13.4) µm at middle flank, *(5.8-)8.3-10(-15) × (3.4-)4-4.8(-5.8) µm at margin, wall thickness *0.3–0.8 µm.

Distribution and ecology — In the N hemisphere in the Canary Islands (Tenerife), Europe (Austria, Bosnia and Herzegovina, Czech Republic, Denmark, Estonia, Finland, France, Germany, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Norway, Poland, Russian Federation, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom), Africa (Algeria, Morocco, São Tomé und Príncipe), Asia (China, Georgia, Japan), North America (Canada, United States), Central America (Costa Rica, Cuba, Grenada, Jamaica) and South America (Colombia, Guyana). In the S hemisphere in Africa (Madagascar, South Africa without locality), Tristan da Cunha, Australia, New Zealand and South America (Argentina, Brazil, Chile). Growing on hardwoods (Acer L., Alnus, Betula, Carpinus, Corylus L, Crataegus L., Eucalyptus L'Hér., Fagus, Fraxinus, Laurus L., Malus Mill., Nothofagus, Populus L., Prunus, Pterocarya Kunth, Quercus, Salix, Sorbus, Tilia) and softwoods (Picea, Pinus). Occurring in all seasons, more abundantly in autumn (Dennis 1956, 1986; GBIF; Gamundí & Romero 1998; Hansen & Knudsen 2000; Roll-Hansen & Roll-Hansen 1979).

Fig. 2.

Morphological features of Ascocoryne sarcoides. — A: apothecia; B: excipular tissues in section; C: paraphyses; D: asci; E: ascospores. — Scale bars: A1, 2, B1 = 500 µm; A3–5 = 100 µm; B2–4, C1–3, D1–4, E1–7 = 10 µm. — Mounted in: C2, 3, D3, E3, 5 = CR; B1–4, C1, D1, 4, E2, 4, 7 = H2O; D2, E1, 6 = MLZ. — Photos from: A3–5, B2–4, C1–3, D2–4, E1–6 = TEC Mic. 22699; A1, 2, B1, D1, E7 = Negrín herb. 220215.

f02_271.jpg

RemarksAscocoryne sarcoides is different from A. cylichnium and A. striata (Ellis & Everh.) V. Kučera & Lizoň in that it does not present oxalate crystals in the excipulum (Roll-Hansen & Roll-Hansen 1979; Kučera & Lizoň 2005). Ascocoryne microspora (Ellis & Everh.) Korf has shorter ascospores (5–6 µm) (Ellis & Everhart 1897). Ascocoryne solitaria (Rehm) Dennis was differentiated from A. sarcoides by its obtuse spores, brown excipulum and lack of purple pigment (Dennis 1971). Ascocoryne turficola (Boud.) Korf differs in its ecology and morphology (Stasińska & Sotek 2004). Two species have drawn our attention, A. javanica (Penz. & Sacc.) K. S. Thind & H. Singh and A. trichophora (A. L. Sm.) Seifert; both cannot be clearly differentiated from A. sarcoides, neither with biometry (Penzig & Saccardo 1902; Seifert 1989) nor using morphology, but to be sure about their synonymization a further morpho-biometric study will be necessary.

Specimens studiedSpain: Canary Islands: Tenerife: La Laguna, Anaga Rural Park, Cuadras de Don Benito, 28°32′12″N, 16°18′05″W, 845 m, humid evergreen laurel forest, on Prunus lusitanica subsp. hixa, 26 Jan 2015, RN (TFC Mic. 22699); idem, 22 Feb 2015, idem (Negrín herb. 220215).

Chlorociboria aeruginascens (Nyl.) Kanouse ex C. S. Ramamurthi & al. in Mycologia 49: 858. 1958. — Fig. 3.

Description — Apothecia 1.5–5 mm in diam., 2–3.8 mm high, cupulate-stipitate, scattered to gregarious (caespitose), stipes of different fruit bodies arising from same point, fleshy, superficial, disc light blue-green (163.1.bG) to strong blue-green (160.s.bG), margin smooth, slightly lobate in larger apothecia; receptacle concolorous but usually covered by a white velvet, darker at base, vivid deep green-blue (175.v.v.gB). Asci *(57.3-)65-72.5(-76) × 4.3-5 µm, †(50-)53-55.7(-57) × 3.3-4 µm; cylindric-clavate, 8-spored, 2-seriate, pars sporifera *18–22 µm, IKI+; arising from croziers. Ascospores *(6.6-)7.4-8(-8.7) * 1.7-2 µm, †(5.5-)6-7(-8) × 1-1.8 µm; subcylindric, straight to slightly inequilateral, without septa, hyaline, thin-walled, with 3–6 drops (LBs, 0.4–1 µm in diam.), LCI = (7-)12-20(-30)%. Paraphyses uninflated, cylindric to sublanceolate, 3- or 4-septate; terminal cell *(14.8-)16.8-20.5(-27.4) × 2-2.7 µm, basal cell *(10-)11.4-12.6(14.5) × 1.7-2.8 µm; simple or branched at lower cells, thin-walled, without drops, apical cell usually covered by a thin amorphous medium green (145.m.G) layer of exudates. Ectal excipulum at base to lower flank t. epidermoidea, *148–188 µm thick, at margin and upper flanks t. prismatica to t. porrecta; *44–135 µm thick at margin and upper flank; light blue-green (163.1.bG), medullary excipulum well delimited in a gelatinized and hyaline t. intricata, without crystals or exudates. Ectal cells *(9-)12-14.8(-18) × (3.8-)4.7-6(-7.3) µm at middle flank, wall thickness *0.4–0.9 µm; *(6-)7.4-8.6(-10.4) × (2.3-)3.3-4(-4.5) µm at margin. Protruding hyphaelike hairs, hyaline and coiled, present at upper flank at margin, *14-29 × 0.9-1.4 µm.

Distribution and ecology — In the N hemisphere in the Canary Islands (Gomera, La Palma, Tenerife), Europe (Andorra, Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Iceland, Ireland, Latvia, Luxembourg, Norway, Portugal, Russian Federation, Slovakia, Slovenia, Spain, Sweden, Switzerland, Ukraine, United Kingdom), Africa (N Africa without locality), Asia (China, India, Japan, Kuril Islands, Philippines, Republic of Korea, Taiwan), North America (Canada, Greenland, Mexico, United States), Central America (Costa Rica, Cuba, Guatemala) and South America (Guyana). In the S hemisphere in Asia (Papua New Guinea), Australia, New Zealand and South America (Argentina, Brazil, Chile, South Georgia and the South Sandwich Islands). Growing on hardwoods (Acer L., Alnus, Apollonias Nees, Betula, Carpinus, Chamaecytisus Link, Corylus, Dracophyllum Labill., Erica, Fagus, Fraxinus, Laurus, Metrosideros Banks ex Gaertn., Morella Lour., Nothofagus, Ocotea Aubl., Persea Mill., Populus, Prunus, Pseudopanax K. Koch, Quercus, Salix, Tilia, Ulmus, Weinmannia L.) and softwood (Agathis Salisb.). Occurring in all seasons, more abundantly from summer to autumn (Beltrán-Tejera & al. 1987, 2004, 2008, 2009; Beltrán-Tejera & Wildpret 1975; Dähncke 1998; Dennis 1956, 1986; Gamundí & Romero 1998; GBIF; González & Beltrán-Tejera 1987; Iglesias & al. 2013; Johnston & Park 2005; Martínez 2000).

RemarksChlorociboria aeruginascens is easy to distinguish macroscopically by the presence of white tomentum in the receptacle, the turquoise colour of hymenium, and the common base, with several stipes arising separately; microscopically it is differentiated from other species in the genus by its ascospore measurements and morphology (Dixon 1975; Johnston & Park 2005). In the last classification proposed by Baral (2016) for Leotiomycetes, the genus was placed in the family Chlorociboriaceae; for phylogenetic details see Wang & al. (2006) and Johnston & al. (2014).

Specimens studiedSpain: Canary Islands: Tenerife: Santa Cruz de Tenerife, Anaga Rural Park, Hoya el Viñatigo, 28°31′42″N, 16°16′40″W, 780 m, dry evergreen laurel forest, on Apollonias barbujana, 5 Feb 2011, LQ & al. (TFC Mic. 23097, 23108); idem, Tacoronte, Agua García, Los Barriales, 28°27′17″N, 16°23′33″W, 945 m, substitutional vegetation “fayal-brezal”, on Persea indica, 22 Feb 2014, RN (TFC Mic. 24506); idem, Tegueste, Anaga Rural Park, Hoya Zapata, 28°31′51″N, 16°31′51″W, 820 m, humid evergreen laurel forest, idem, 22 Mar 2012, LQ & CQ (TFC Mic. 23404, 23412). — Gomera: Hermigua, Garajonay National Park, El Palo Labrado, 28°07′37″N, 17°13′15″W, 910 m, idem, on unidentified wood, 25 Dec 2012, RN (Negrín herb. 25122011).

Fig. 3.

Morphological features of Chlorociboria aeruginascens. — A: apothecia; B: asci; C: excipular tissues in section; D: hairs; E: ascospores; F: paraphyses. — Scale bars: A5–7 = 2.5 mm; A1–4 = 500 µm; C1 = 50 µm; B1–4, C2, D1–4, E1–3, F1, 2 = 10 µm. — Mounted in: B1, D1, 3, E2, F2 = CR; B2, 4, C1, 2, D2, 4, E1, F1 = H2O; B3, E3 = MLZ. — Photos from: A1 = TFC Mic. 23404; A2–4, B1–4, C1, 2, D1–4, E1–3, F1, 2 = TFC Mic. 24506; A5–7 = Negrín herb. 25122011.

f03_271.jpg

Cyathicula cyathoidea (Bull.) Thüm., Fungi Austriaci Exsicc. Cent. 12: no. 1115. 1874. — Fig. 4.

Description — Apothecia 0.4–1 mm in diam., 0.4–0.5 mm high, cupulate or discoid, shortly stipitate (stipe to 0.2 mm long), scattered to gregarious, superficial, disc light olivebrown (94.1.O1Br) to medium yellow-brown (77.m.yBr), margin entire to slightly crenulate, with or without whitish protruding hyphae-like hairs; receptacle concolorous. Asci *(55.4-)70.5-76(-96.6) × (5.4-)6-6.6(-8 µm, †(45.8-)54.5-58.5(-68) × (3.4-)4.6-5(-5.7) µm; cylindric-clavate, 8-spored, 2-seriate, pars sporifera *20–38 µm, IKI+; arising from simple septa. Ascospores *(8.7-)10.8-11.5(-15.5) × 2-3.2 µm, †(7-)9-9.6(-12.4) × 1.8-2.3 µm; ellipsoid, subcylindric or fusiform, straight to inequilateral or slightly helicoid, aseptate, hyaline, thin-walled, without drops. Paraphyses uninflated, cylindric to slightly capitate, 3- or 4-septate; terminal cell *(17-)22.3-26.4(-33.4) × (2.2-)2.7-3(-4) µm, basal cell *(8.8-)13.7-17.4(-25) × 1.7-3 µm; simple, thin-walled, filled by greyish yellow (90.gy.Y) tiny drops (LBs, multiguttulate). Ectal excipulum at base to lower flank t. oblita, *57–111 µm thick, at margin and upper flanks t. prismatica to t. porrecta; *14–75 µm thick at margin and upper flank; usually light yellow-brown (77.1.yBr) to medium yellowbrown (77.m.yBr), sometimes darker at margin or upper flank (deep greyish brown (62.d.gy.Br); medullary excipulum well delimited by a non-gelatinized and hyaline t. porrecta to t. intricata, outermost layer of cells slightly covered by amorphous resin-like matter or crystals. Ectal cells *(11-)20-24(-34.5) × (3-)3.6-4(-5.6) µm at middle flank, wall thickness *0.3–1.5 µm; *(9-)11.6-13(-17.7) × (2-)2.5-3(-3.7) µm at margin. With or without protruding hyphae-like hairs at margin, walls medium yellow-brown (77.m.yBr) to deep yellow-brown (75.deepyBr), to *16 × 3-4 µm, slightly encrusted with bright amorphous resin-like matter or crystals.

Distribution and ecology — In the N hemisphere in the Canary Islands (Gomera, Gran Canaria, La Palma, Tenerife), Europe (Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Hungary, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Romania, Russian Federation, Slovenia, Spain, Sweden, Switzerland, United Kingdom), Africa (Morocco), Asia (China, India, Japan, Pakistan, Philippines), North America (Canada, United States) and Central America (Cuba). In the S hemisphere in Asia (Papua New Guinea), Australia, New Zealand and South America (Argentina). Growing on hardwoods (Adenocarpus DC., Castanea Mill., Chamaecytisus, Fraxinus, Phytolacca L., Robinia L., Sambucus L., Sorbus, Spartocytisus Webb & Berthel.), on softwood (Pinus), on herbaceous or woody stems (Aconitum L., Actaea L., Adenocaulon Hook., Adenostyles Cass., Aegopodium L., Alopecurus L., Amaranthus L., Angelica L., Anthriscus Pers., Aquilegia L., Arctium L., Artemisia L., Atropa L., Bartsia L., Brassica L., Bromiis L., Calamagrostis Adans., Campanula L., Carduus L., Carlina L., Centaurea L., Cerastium L., Cichorium L., Cirsium Mill., Corydalis DC, Dahlia Cav., Delphinium L., Deschampsia P. Beauv., Digitalis L., Epilobium L., Eupatorium L., Filipendula Mill., Geum L., Helianthus L., Heracleum L., Holcus L., Hyacinthoides Heist, ex Fabr., Iris Tourn. ex L., Isodon (Schrad. ex Benth.) Spach, Lathyrus L., Leonurus L., Lupinus L., Lysimachia L., Malva L., Matricaria L., Melampyru L., Mentha L., Mercurialis L., Myrrhis Mill., Nepeta L., Oenanthe L., Ononis L., Osmorhiza Raf., Parnassia L., Pastinaca L., Pedicularis L., Pericallis D. Don, Plantago L., Polymnia L., Pterocephalus Adans., Raphanus L., Rubus L., Rumex L., Sasa Makino & Shibata, Scirpus L., Senecio L., Sideritis L., Silene L., Solanum L., Solidago L., Sonchus L., Spiraea L., Stachys L., Streptopus Michx., Symphytum L., Todaroa Parl., Trifolium L., Tripleurospermum Sch. Bip., Umbellularia (Nees) Nutt., Urtica L., Veratrum L., Vicia L.), on fern rachises (Lycopodium L., Pteridium Scop.), on dead culms (Bambusa Schreb., Juncus L., Phragmites Adans., Zea L.) and on leaves (Festuca L., Pinus). Occurring in all seasons, more abundantly from spring to autumn (Beltrán-Tejera & al. 2004, 2008; Carpenter 1981; Dennis 1956, 1986; GBIF; Gamundí & Romero 1998; Hansen & Knudsen 2000; Urries 1957).

Remarks — In his monograph, Carpenter (1981) explained the taxonomic history of Cyathicula cyathoidea and wrote that this species is the most commonly collected and widely distributed in the genus. All our features fit well with Cyathicula cyathoidea [=Crocicreas cyathoideum (Bull.) S. E. Carp]. Cyathicula complicata (P. Karst.) Dennis is similar but the asci are inamyloid. Cyathicula cacaliae (Pers.) Dennis differs only in the colour of the medullary excipulum (dark brown, vs. hyaline in C. cyathoidea). Cyathicula coronata (Bull.) Rehm and C. pallidum (Velen.) S. E. Carp, differ in their longtoothed apothecial margin, and larger asci and ascospores (Carpenter 1981). The genus remained included in Helotiaceae in the last classification of Leotiomycetes (Johnston & al. 2014; Baral 2016).

Specimens studiedSpain: Canary Islands: Tenerife: Arafo, Montaña Ismana, 28°22′22″N, 16°27′39″W, 1855 m, typical Canary pine woodland, on Todaroa montana, 20 Jun 2014, LQ, RN & MR (TFC Mic. 21093, 21094, 21115, 21132); idem, Candelaria, Lomo Colorado, 28°24′37″N, 16°24′21″W, 1430 m, humid Canary pine woodland, on Chamaecytisus proliferus, 26 Sep 2012, LQ & CQ (TFC Mic. 23571); idem, Guía de Isora, Teide National Park, El Morro los Cerillos, 28°15′10″N, 16°42′38″W, 2010 m, meso-oromediterranean summit broom scrub, on Spartocytisus supranubius, 22 Mar 2014, idem (TFC Mic. 24531); idem, on Pterocephalus lasiospermus, idem (TFC Mic. 24530); idem, La Orotava, Cuesta la Burra, 28°18′08″N, 16°34′27″W, 2075 m, idem, on Spartocytisus supranubius, 30 Dec 2013, idem (TFC Mic. 24366); idem, Los Lajones, 28°19′51″N, 16°29′37″W, 2060 m, idem, on Pterocephallus lasiospermus, 21 Feb 2013, idem (TFC Mic. 23883); idem, on Spartocytisus supranubius, 23 Mar 2014, idem (TFC Mic. 24519, 24523); idem, Santiago del Teide, La Gollada, 28°16′45″N, 16°48′05″W, 1045 m, Euphorbia atropurpurea scrub, on Carlina salicifolia, 13 Apr 2013, LQ & al. (TFC Mic. 24081); idem, Vilaflor, La Montañeta, 28°10′21″N, 16°38′49″W, 1790 m, typical Canary pine woodland, on Sideritis soluta, 9 Mar 2013, LQ & CQ (TFC Mic. 23928, 23929).

Fig. 4.

Morphological features of Cyathicula cyathoidea. — A: apothecia; B: asci; C: paraphyses; D: excipular tissues in section; E: ascospores. — Scale bars: A1–7 = 500 µm; A8–10 = 100 µm; D1, 2 = 50 µm; B1–4, C1–4, E1–5 = 10 µm. — Mounted in: B4, C2, E4 = CR; B1, C1, D1, 2, E2, 3 = H2O; C3, E5 = KOH; B2, 3, C4, E1 = MLZ. — Photos from: A1, B2–4, C2, E1, 2 = TFC Mic. 21093; A2, 3, B1, C1, E5 = TFC Mic. 21094; A4–7, D2, E3 = TFC Mic. 21115; A8–10, C3, 4, D1, E4 = TFC Mic. 24081.

f04_271.jpg

Cyathicula hysterioides (Rehm) E. Müll., Beitr. Kryptogamenfl. Schweiz 15(1): 35. 1977. — Fig. 5.

Description — Apothecia 0.9–1.5 mm in diam., 0.2–0.4 mm high, cupulate or discoid with narrow attachment, scattered to subgregarious, superficial, disc brown-grey (64.brGrey) to deep greyish brown (62.d.gyBr), usually less dark in middle, from light yellow (86.1.Y) or medium orange-yellow (71.m.OY), margin constituted by short whitish hairs; receptacle concolorous. Asci *(65-)75-90(-98.3) × (-5.7)7-7.8 µm, †(51.5-)60.5-66.4(-69) × (4.3-)4.8-5.4(-6) µm; cylindric-clavate, 8-spored, 2-seriate, pars sporifera *30–33 µm, pore inamyloid; arising from simple septa. Ascospores *(10.6-)13-14.3(-16.5) × 2.5-3(-3.6) µm, †(9.4-)11-12.3(-13.7) × 1.8–2.6 µm; subcylindric to fusiform, straight to inequilateral or slightly helicoid, aseptate, hyaline, thin-walled, without drops. Paraphyses cylindric to slightly capitate, 3- or 4-septate; terminal cell *(20-)23.7-29.3(-35.4) × (2.5-)3-3.5(-4.2) µm, basal cell *(10-)14.7-18(-22) × 2-3 µm; simple, thin-walled, filled by tiny greyish yellow (90.gy.Y) drops (LBs, multiguttulate). Ectal excipulum at base to lower flank of t. oblita, *44–68 µm thick, at margin and upper flanks of t. prismatica to t. porrecta; *16–45 µm thick at margin and upper flank; deep yellow-brown (78.d.yBr) to deep greyish yellow (91.d.gy.Y); medullary excipulum differentiated in a non-gelatinized and hyaline t. porrecta to t. intricata, outermost layer of cells covered by amorphous resin-like matter or crystals. Ectal cells *(10.8-)16-20.3(-30.5) × (3-)3.7-4.4(-6) µm at middle flank, wall thickness *0.4–1.6 µm; *(10-)13-16(-18.7) × (3-)3.4-4(-4.7) µm at margin. Protruding hyphae-like hairs at margin and upper flank with deep yellow-brown (75.deepyBr) to dark yellow-brown walls (78.d.yBr), *22-37 × 3-4.3 µm, strongly encrusted with bright amorphous resin-like matter or crystals.

Distribution and ecology — In the N hemisphere in the Canary Islands (Tenerife), Europe (Austria, Germany, Iceland, Norway, Switzerland) and North America (United States). Growing on woody stems (Aconitum, Arnica L., Gentiana L., Oxyria Hill., Todaroa, Xerophyllum Michx.). Occurring from summer to autumn (Carpenter 1981; GBIF; Hansen & Knudsen 2000; Rehm 1882).

RemarksCyathicula hysterioides is considered an alpine fungus, found at altitudes above 1600 m between summer and the beginning of autumn. In his monograph, Carpenter (1981) remarked on the inamyloid asci and large ascospores as being distinctive characters of this species. There are three similar alpine species: (1) C. eschscholtziae (Phillips & Harkn.) S. E. Carp, and (2) C. nigrofuscum (Rehm) S. E. Carp., which differ in their shorter ascospores (7–12 µm and 5–9 µm, respectively); and (3) C. fuscum (Phillips & Harkn.) S. E. Carp., which differs in its 3-septate ascospores (Carpenter 1981). Our sample fits well with the ecology and the morphology presented by Carpenter (1981). This species is reported for first time in the Canary Islands.

Specimen studiedSpain: Canary Islands: Tenerife: Arafo, Montaña Ismana, 28°22′22″N, 16°27′39″W, 1855 m, typical Canary pine woodland, remains of inflorescence of Todaroa montana, 20 Jun 2014, LQ, RN & MR (TFC Mic. 21122).

Durella connivens (Fr.) Rehm, Ascomyceten 3: no. 18. 1881.— Fig. 6.

Description — Apothecia 0.2–0.4 mm in diam., to 0.3 mm high, turbinate to discoid, with narrow attachment, scattered to subgregarious, superficial, subsessile, dark greyish olive (111.d.gy.Ol) to olive-black (114. OlBlack). Asci *121.3-138.7(-142.3) × 13.3-16.7 µm, †(71-)75-89(-100.7) × 8.7-10(-11) µm; cylindricclavate, 8-spored, spores 2- or 3-seriate, pars sporifera *48–71.5 µm, pore inamyloid; arising from croziers. Ascospores *(29-)32-36(-38.3) × 4.2-5.2 µm, †24.3-34.4 × 4.1-4.6 µm; subcylindric to fusoid, straight to slightly curved, (5 or)6- or 7-septate, hyaline; thin-walled, filled by (3-)5-8 large greyish yellow (90.gy.Y) guttules (VB), when immature filled by many small guttules (multiguttulate), LCI = (20-)45-75(-90)%. Paraphyses uninflated cylindric to medium clavate, multiseptate; terminal cell *(16-)17-25,4(-29.6) × 1.7-2.8 µm, basal cell *(8.2-)11-19.7 × 1.5-2.1 µm; simple to bifurcate below second cell, thin-walled, with long greyish yellow (90. gy.Y) cylindric VBs, slightly releasing a yellow pigment in KOH. Ectal excipulum from base to margin t. oblita, at base and lower flank *25–34 µm thick; at margin and upper flank *5.7–24.4 µm; black (267.Black) to brown black (65.brBlack), cell lumen light greyish red-brown (45.1.gy.rBr), cell wall dark red-brown (44.d.rBr), without crystals or exudates. Ectal cells *(7.8-)8.5-11(-14) × 1.8-2.8 µm at middle flank, wall thickness *0.3–0.9 µm; *(8.3-) 10-12(-13.6) × 1.8-3.2 µm at margin.

Fig. 5.

Morphological features of Cyathicula hysterioides. — A: apothecia; B: excipular tissues in section; C: asci; D: paraphyses; E: ascospores. — Scale bars: A1–4 = 500 µm; B1 = 50 µm; B2–5, C1, 2, D1, 2, E1, 2 = 10 µm. — Mounted in: B3, D2 = CR; B1, 2, 4, 5, C1, D1, E2 = H2O; C2, E1 = MLZ. — All photos from TFC Mic. 21122.

f05_271.jpg

Fig. 6.

Morphological features of Durella connivens. —A: apothecia; B: excipular tissues; C: asci; D: paraphyses; E: ascospores. — Scale bars: A3-5 = 500 µm; A1, 2 = 100 µm; B1 = 50 µm; B2, 3, C1-5, D1, 2, E2 = 10 µm; E1 = 5 µm. — Mounted in: C4 = CR; B1-3, C1, 5, D1, E2 = H2O; E1 = KOH; C2, 3, D2 = MLZ. — All photos from TFC Mic. 24012.

f06_271.jpg

Distribution and ecology — In the N hemisphere in the Canary Islands (Tenerife), Europe (Austria, Denmark, Finland, France, Germany, Luxembourg, Spain, Sweden, United Kingdom), Asia (Israel, Japan) and North America (United States). In the S hemisphere in New Caledonia and New Zealand. Growing on hardwoods (Betula, Chamaecytisus, Corylus, Crataegus, Fagus, Lonicera L., Malus, Phormium J. R. Forst. & G. Forst, Populus, Quercus, Ribes L., Salix, Spiraea, Ulex L., Ulmus). Occurring in all seasons (Ascofrance 2015; Dennis 1956, 1986; GBIF; Hansen & Knudsen 2000).

RemarksDurella connivens is differentiated from other species in the genus by its multiseptate ascospores and inamyloid asci. The Canarian specimen fits well with the descriptions in Dennis (1956). Some inamyloid species in the genus are differentiated as follows: D. atrocyanea (Fr.) Höhn has 3-septate ascospores and the apothecia are erumpent in decorticated wood; D. commutata Fuckel has 0- or 1-septate ascospores; D. macrospora Fuckel, D. melanochlora (Sommerf.) Rehm and D. suecica (Starbäck) Nannf. have shorter ascospores; other common species in the genus are amyloid (Baral & Marson 2005; Dennis 1956; Hansen & Knudsen 2000; Medardi 2004). In the last classification proposed by Baral (2016) for Leotiomycetes, the genus was placed in the Strossmayeria Schulzer lineage. The genus Durella Tul. & C. Tul. is reported here for first time in the Canary Islands.

Specimen studiedSpain: Canary Islands: Tenerife: La Orotava, Escobón Cortado, 28°19′51″N, 16°31′51″W, 1585 m, typical Canary pine woodland, on Chamaecytisus proliferus, 28 Mar 2013, LQ & CQ (TFC Mic. 24012).

Pseudohelotium sordidulum (P. Karst.) Huhtinen in Karstenia 34: 6. 1994. — Fig. 7.

Description — Apothecia 0.3–0.5 mm in diam., to 0.2 mm high, discoid with broad attachment, sparse, superficial, subsessile, white (263 .White) to yellow-white (92.yWhite), slightly hairy under margin. Hairs cyhndric, 2–4-septate, straight or undulating; slightly thickened glassy walls (to 0.8 µm), surface smooth, aguttulate, without resinous matter or changes in CR, KOH, LUG or MLZ; at upper flank *20-49.6 × 2.5-2.7 µm at base, at margin *11-15 × 3-3.8 µm. Asci *93-103(-107) × 8-10(-11 ) µm, †72-79.5(-84) × 6-7.4 µm; cylindric-clavate, 8-spored, 2-4-seriate, pars sporifera *31.5–41 µm, IKI+; arising from croziers. Ascospores *(17.8-)20-22(-26.6) × 2.5-33 µm, † 15.6-20 × 2.2-2.8 µm; fusiform to clavate-subulate, inequilateral, straight to medium curvate, 1-3(or 4)-septate, hyaline, thin-walled, multiguttulate, LCI = (7-)12-20(-30)%. Paraphyses uninflated cylindric to slightly clavate, 3- or 4-septate; terminal cell *(15.6-)17-20.6(-23) × 1.7-2.6(-3.5) µm, basal cell *(8.6-)11-14.5 × 1.4-1.7 µm; simple to bifurcated near apex, thin-walled, apparently aguttulate, but with minute SCBs in apical cell. Ectal excipulum from base to margin of t. angular to t. prismatica, *34–79 µm thick at base and middle flanks; *7–35 µm thick at margin and upper flank; hyaline to light brown (57.1.Br), slightly gelatinized at upper flank and margin, without crystals or resinous matter. Ectal cells *(9-) 10.5-13(-14) × (5.4-)6.3-8.2 µm at middle flank, wall thickness ×03–0.8 µm; *(8-)9-12.3(-15.3) ×x 3-6 µm at margin.

Distribution and ecology — In the N hemisphere in the Canary Islands (Tenerife) and Europe (Czech Republic, Denmark, Finland, Germany, Luxembourg, Spain). Growing on softwood and cone scales of Pinus. Occurring in all seasons (Ascofrance 2015; GBIF; Huhtinen 1994; Karsten 1869; Marson & al. 1996; Svrček 1987).

Remarks — Huhtinen (1994) conducted a historical survey of this species, explaining the differences observed by different authors since Karsten (1869) described Peziza sordidula P. Karst, (the basionym) as follows: apothecia gregarious, pale, without margin, 0.2–03 mm in diam.; ascospores fusoid to acicular, straight or curvate, (14-)18-25(-30) × 3-4 µm, with drops; asci cylindric-clavate, 65-75 × 9-11 µm, pore amyloid; and paraphyses cylindric, to 1 µm at apex; growing on wood of Pinus sylvestris (Karsten 1869). More than 100 years later, Svrček (1987) gave a detailed description of a new combination in the genus Pseudohelotium Fuckel, P. vernale (Vel.) Svrček, nowadays considered a synonym of P. sordidulum. In his description, Svrček described the excipulum, obtaining slightly different ascospore measurements (17-19.5 × 2.5-3 µm) and explained that the marginal hyphae grow out and have thick walls. The morphology and ecology agree with references of this species (Huhtinen 1994; Karsten 1869; Svrček 1987). The genus is currently placed as incertae sedis in the order Helotiales (Baral 2016) and none of its species has been studied by molecular methods. The genus Pseudohelotium is reported here for the first time in the Canary Islands.

Pseudohelotium pineti (Batsch) Fuckel is the most similar species, but in that species the excipulum is brownish, the protruding hyphae in the excipulum are clavate, without thickened walls, the asci are shorter (to 70 µm long) and the ascospores are narrower (to 2 µm wide) (Dennis 1956, 1978).

Specimen studiedSpain: Canary Islands: Tenerife: La Orotava, Teide National Park, Los Lajones, 28°19′51″N, 16°29′37″W, 2060 m, Canary pine woodland with summit brooms, on Pinus pinaster, 21 Feb 2013, LQ & CQ (TFC Mic. 23870).

Fig. 7.

Morphological features of Pseudohelotium sordidulum. —A: apothecia; B: asci; C: paraphyses; D: excipular tissues in section and hairs; E: ascospores. — Scale bars: A3 = 500 µm; A1, 2 = 100 µm; D1 = 50 µm; B1-5, C1-4, D2-4, E1, 3 = 10 µm; E2 = 5 µm. — Mounted in: D1, 3 = CRB; B4, 5, C1, 2, 4 = CR; B1, 2, C3, D2, 4, E1-3 = H2O; B3 = LUG. — All photos from TFC Mic. 23870.

f07_271.jpg

Strossmayeria basitricha (Sacc.) Dennis, Brit. Cup Fungi & Allies: 73. 1960. —Fig. 8.

Description — Apothecia (0.3-)0.4-0.5(-0.7) mm in diam., to 0.4 mm high, pulvinate, scattered to gregarious, superficial, sessile, usually deep greyish yellow (91.d.gy.Y) to medium olive-brown (95.m.O1Br), occasionally bluegrey (191.b.Grey). Asci *(133.7-)154-181.5(-219) × (14 )15-16(17.6) µm, †(112-) 127.4-143(-164.8) × (-9.3) 12.4-14(-16) µm; cylindric-clavate, 8-spored, spores 2- or 3-seriate, pars sporifera *66–102 µm, IKI+; arising from croziers. Ascospores *(27.7-)35-39(-43.6) × 4.4-5.5(-7.2) µm, †(25-)31-35(-37.6) × 3.6-4.7 µm; cylindric to subcylindric, straight to slightly curved (helicoid), (5 or)6- or 7-septate, hyaline; with a wrinkled gelatinous thick wall, 0.8–1.9 µm wide, filled by small guttules surrounded by (1 or)2 or 3(-6) large guttules, LCI = (12-)45-75(-90)%. Paraphyses uninflated cylindric to medium clavate, multiseptate; terminal cell *(38.4-)44.5-58.5(-65) × 2.7-4.4 µm, basal cell *(16-)19-30(-39) × 2-4 µm; simple to bifurcate below second cell, thin-walled, with greyish yellow (90.gy.Y) cylindric VBs releasing a yellow pigment in KOH. Fetal excipulum from base to margin of t. porrecta to t. prismatica, at base and lower flank *41–115 µm thick; at margin and upper flank *11–34 µm; hyaline at margin to medium brown (58.m.Br) or deep brown (59.d.Br) near base, without crystals or exudates. Ectal cells *(9.5-) 13.7-16.3(-22.7) × (3.7-)4.7-5.7 µm at middle flank, wall thickness *0.1–0.8 µm; *(6-)9-12(-15) × 2.4-4.4 µm at margin.

Distribution and ecology — In the N hemisphere in the Canary Islands (Gomera, La Palma, Tenerife), Azores (Terceira), Europe (Austria, Belgium, Czech Republic, Denmark, France, Germany, Italy, Norway, Slovakia, Spain, Switzerland, United Kingdom), Asia (Japan) and North America (Mexico, United States). In the S hemisphere in New Zealand. Growing on hardwoods (Acer, Carpinus, Castanea, Chamaecytisus, Corylus, Fagus, Fraxinus, Ilex L., Laurus, Morella, Picconia, Platanus L., Prunus, Quercus, Rubus). Occurring in all seasons, more abundantly from summer to autumn (Ascofrance 2015; Dennis 1978, 1986; GBIF; Iglesias & al. 2013; Iturriaga & Korf 1990; Karasch & al. 2005).

RemarksStrossmayeria basitricha is differentiated from other species in the genus by its light-coloured apothecia (pale brown to grey), clavate asci and the following ascospore characteristics: (1) hyaline wall; (2) gel sheath verrucose and narrower than 1.5 µm; (3) 5–7-septate ascospores; and (4) measurements. Two species are very similar: Iturriaga & Korf (1990) distinguished S. bakeriana (Henn.) Iturr. because its ascospores have a longer range of variation (26–48 µm vs 30–64 µm); while S. alba (P. Crouan & H. Crouan) Iturr. & Korf is differentiated by its shorter asci (82–140 µm vs 82–114 µm) and fewer septa in the conidia (5–11 vs 6–8). In the current classification of Leotiomycetes, the genus is placed in the Strossmayeria lineage (Hustad & Miller 2011; Baral 2016).

Using the key for the genus in Iturriaga & Korf (1990), the European collections of the genus are difficult to identify, as is manifested in discussions in Ascofrance forums. The morphological and biometrical characters exposed among S. alba, S. bakeriana and S. basitrichia, and also with other species, overlap in the majority of cases.

Specimens studiedSpain: Canary Islands: Tenerife: Santa Cruz de Tenerife, Anaga Rural Park, Barranco la Mina, 28°33′12″N, 16°11′05″W, 780 m, hygrophilous evergreen laurel forest, on Morella faya, 14 Feb 2012, LQ & CQ (TFC Mic. 23378); idem, 24 Oct 2012, idem (TFC Mic. 23695), idem, on Laurus novocanariensis, 14 Feb 2012, idem (TFC Mic. 23686); idem, Descansaderos de Tierra, 28°32′21″N, 16°13′25″W, 860 m, Erica platycodon ridge-crest evergreen forest, on Morella faya, 7 Apr 2013, idem (TFC Mic. 24062); idem, Cabezo de la Mina, 28°33′20″N, 16°11′02″W, 800 m, idem, 28 May 2012, idem (TFC Mic. 23508); idem, on Laurus novocanariensis, 19 Oct 2013, idem (TFC Mic. 24328, 24331); idem, Rosa Alta, 28°33′11″N, 16°11′16″W, 765 m, hygrophilous evergreen laurel forest, on Prunus lusitanica subsp. hixa, 24 Oct 2013, idem (TFC Mic. 23698); idem, on Ilex canariensis, 13 Aug 2013, idem (TFC Mic. 24279); idem, El Pijaral, 28°33′11″N, 16°11′18″W, 775 m, humid evergreen laurel forest, idem, 19 Feb 2011, LQ & al. (TFC Mic. 23120); idem, on Laurus novocanariensis, idem (TFC Mic. 23120); idem, on Ilex canariensis, 13 Aug 2013, LQ & CQ (TFC Mic. 24256); idem, Tegueste, Anaga Rural Park, Hoya Zapata, 28°31′51″N, 16°17′46″W, 820 m, idem, on Laurus novocanariensis, 8 May 2013, idem (TFC Mic. 24192); idem, Hoya el Palomo, 28°32′03″N, 16°19′37″W, 640 m, dry evergreen laurel forest, on Ilex canariensis, 16 Jun 2012, idem (TFC Mic. 23529); idem, on Picconia excelsa, 16 Jun 2012, idem (TFC Mic. 23539); idem, on Laurus novocanariensis, idem (TFC Mic. 23541, 23543).

Velutarina rufoolivacea (Alb. & Schwein.) Korf in Phytologia 21: 201. 1971. — Fig. 9.

Description —Apothecia 1–1.8 mm in diam., to 1 mm high, scattered to subgregarious, superficial, sessile, disc light olive-green (94.1.O1Br) to light olive (106.1.01), flat to slightly depressed at maturity, margin recurvate, receptacle cottony and pink-grey (10.pkGrey). Asci *(166.6)173.4-212(-223) × 14.4-16.4µm, † 119.4-141.4 × 8.3-13.4 µm; cylindric-clavate, 8-spored, *1-seriate, pars sporifera *85–106 µm, apex round with an apical thickening †0.9–2.4 µm, pore dextrinoid in LUG, IKI+ (hemiamyloid reaction); asci arising from simple septa. Ascospores *12.3-13.7 × 7.7-9.5 µm, †10.7-13 × 6-8 µm; ellipsoid to rarely obovoid, straight, aseptate, hyaline (brownish in overmature spores), thin-walled, completely filled by lipid bodies, 1 or 2 guttules larger than others, *3.7–5.2 µm in diam. (LCI = 45–90 %), when dead usually appearing as one large, globose to elongate guttule. Paraphyses slightly to medium clavate, sometimes sublageniform, straight to slightly sinuous; terminal cell *(29-)33-43(-48.7) × (4.5-)5.5-7.3(-8.5) µm, basal cell *19.5-23.4 × 2.1-2.5 µm; branched near apex, usually bifurcate, thin-walled, living apical cell filled by a large light olive-brown (94.l.OlBr) vacuolar body *11-28 × 4-7 µm. Ectal excipulum not clearly delimited from medullar layer, of t. intricata mixed with globose cells, cortical layer of t. angular to t. globulosa, *194–700 µm thick from base to upper flanks, light brown (57.1.Br) to dark brown (59.d.Br), strongly gelatinized (losing it after adding KOH), with refractive appearance due to glassy walls of cells. Prismatic cells at base and flanks in inner layer *8.5-21 × 2.3-4.3 µm, with glassy refractive wall *1.9–5 µm thick, cortical cells at base and flanks globose to clavate *13.4-17.7 × 7.9-10.4 µm, with a large light olive-brown (94.l.OlBr) vacuolar body, usually with outermost cells forming irregular protrusions of prismatic cells (1–7 cells) similar to hairs. Margin of t. globulosa *56–153 µm thick, outermost cells clavate, *12.4-21.5 × 7-14 µm, filled by a light olive-brown (94.l.OlBr) refractive globose vacuolar body.

Fig. 8.

Morphological features of Strossmayeria basitricha. — A: apothecia; B: excipular tissues; C; ascospores; D: asci; E: paraphyses. — Scale bars: A1, 2, 5, 6, 8 = 500 µm; A3, 4, 7, B1, 2 = 100 µm; D1, 2, 5, E1 = 50 µm; B3, 4, C1, 5, 7, 8, D3, 4, 6–9, E2–5 = 10 µm; C2–4, 6 = 5 µm. — Mounted in: C3, 6, D7, E4 = CRB; C2, 7, D2, 3, E3 = CR; B1, 3, 4, C1, 4, 5, 8, D1, 5, 6, 8, 9, E1, 2, 5 = H2O; B2 = KOH; D4 = MLZ. — Photos from: A1–4, B4, C1–4, Dl, 2, 6–8, E4 = TFC Mic. 23378; A7, C5, 6 = TFC Mic. 23508; B3, D9 = TFC Mic. 24062; E5 = TFC Mic. 24192; A5, 6, 8, B1, 2, C7, 8, D3–5, E1–3 = TFC Mic. 24279.

f08_271.jpg

Fig. 9.

Morphological features of Velutarina rufoolivacea. — A: apothecia; B: ascospores; C: excipular tissues; C1: section; C2, 3: ectal cells at margin; C4: ectal cortical cells at lower flank; C5: protruding cells at flank; C6, 7: ectal cells at inner layer; D: asci; D1: living asci; D2–4: ascus apex; D5: ascus base; E: living and dead paraphyses. — Scale bars: A1–4 = 500 µm; C1 = 100 µm; C2, D1 =50 µm; B1, 2, C3–7, D2–5, E1, 2 = 10 µm. — Mounted in: C3–5 = CR; B1, 2, C1, 2, 6, D1, 2, 5, E1 = H2O; C7, D3, E2 = KOH; D4 = LUG. — All photos from TFC Mic. 23496.

f09_271.jpg

Distribution and ecology — In the N hemisphere in the Canary Islands (Gomera, Tenerife), Europe (Austria, Czech Republic, Denmark, France, Finland, Germany, Netherlands, Norway, Sweden, United Kingdom), Asia (China, Pakistan) and North America (Canada). In the 5 hemisphere in New Zealand. Growing on hardwoods (Acer, Andromeda L., Arbutus L., Berberis L., Betula, Corylus, Crataegus, Cytisus L., Fagus, Fraxinus, Liquidambar L., Malus, Morella, Quercus, Rhododendron L., Rosa L., Rubus, Salix, Sassafras J. Presl, Tilia, Ulex, Viburnum L., Vitis L.), on softwood (Juniperus L., Picea) and on fern rachises (Pteridium). Occurring in all seasons (Dennis 1956, 1978, 1986; GBIF; Kummer 2002; Van-Vooren 2009; Zhuang 1999).

Remarks — There are four accepted species in the genus. Velutarina rufoolivacea and V. juniperi (Dennis) K. Holm & L. Holm (Kirk & al. 2008) differ in the colour of their apothecia: greenish in V. rufoolivacea vs yellow in V. juniperi; and their asci: amyloid in V. rufoolivacea vs inamyloid in V. juniperi (Hansen & Knudsen 2000). A third species, V. phaeosporum (Cooke) Korf, appeared as an unclear taxon in Kirk & al. (2008), but it was synonymized in Dennis (1956) with V. rufoolivacea. Two new species were published three years ago (Baral & Perić 2014): V. bertiscensis B. Perić & Baral has larger ascospores than V. rufoolivacea and V. juniperi, while V. alpestris B. Perić & Baral has narrower spores. All the characteristics of our sample fit well with the descriptions of V. rufoolivacea consulted (Baral & Marson 2005; Dennis 1956, 1978; Hansen & Knudsen 2000; Baral & Perić 2014). In the last classification proposed by Baral (2016) for Leotiomycetes, the genus was placed in the Cenangiaceae lineage, well supported in a recent multi-locus phylogeny (Pärtel & al. 2017). The genus Velutarina Korf is reported here for first time in the Canary Islands.

Specimens studiedSpain: Canary Islands: Tenerife: Los Silos, Teno Rural Park, Lomo Alto, 28°20′04″N, 16°49′22″W, 750 m, dry evergreen laurel forest, on Arbutus canariensis, 4 May 2012, LQ & al. (TFC Mic. 23496). — Gomera: Valle Gran Rey, Garajonay National Park, Apartacaminos, 28°08′08″N, 17°16′51″W, 1100 m, humid evergreen laurel forest, on Morella faya, 20 Mar 2016, RN (RN-16032001).

Discussion

Our study of the Helotiales in the Canary Islands has corrected a previous record of species occurrence (Ascocoryne cylichnium), added new information on Cyathicula (a new report of C. hysterioides) and has reported three new genera (Durella, Pseudohelotium, Velutarina), each with one species.

Ascocoryne cylichinum and A. sarcoides are common in the N hemisphere on hardwood and softwood and appear throughout the year. In the Canary Islands the occurrence of fruit bodies is similar, but both species seem to be restricted to the laurel forest on hardwood. The morphological characteristics of our A. cylichnium samples fit well with the consulted references (Dennis 1956; Gamundí & Romero 1998; Hansen & Knudsen 2000; Roll-Hansen & Roll-Hansen 1979), although it is important to remark that the ascospore length in the Canarian samples is in the lower part of the range of variation [*(14-)16-17.5(-18.5) µm], something that should be studied using molecular tools and more samples to elucidate if the Canarian specimens could belong to a different species. Chlorociboria aeruginascens is one of the most frequently reported species of lignicolous Helotiales in the Canary Islands and its ecology coincides with the general knowledge reported before for this taxon (Johnston & Park 2005). Cyathicula cyathoidea has a wide ecological spectrum: a worldwide distribution, on all types of substrates (hardwood, softwood, herbaceous stems, woody stems, rachises of ferns, dead culms and leaves) and occurs in all seasons. In the Canary Islands it grows at altitudes of 500–2200 m in all types of vegetation (Euphorbia scrub, pine forest, laurel forest, summitbroom scrub) and on hardwood, softwood, woody and herbaceous stems (Beltrán-Tejera & al. 2004, 2008), so it has the same wide range there. On the other hand, C. hysterioides has only been found once in dry pine forest on an endemic Apiaceae, but the substrate fits very well with the bibliography (Carpenter 1981; Hansen & Knudsen 2000; Rehm 1882). The Canarian reports of Durella connivens and Pseudohelotium sordidulum are the southernmost records of these taxa in the N hemisphere; moreover the latter and C. cyathoidea are the only two species of Helotiales in the summit-broom scrub in the highest altitudes of the archipelago. Strossmayeria basitricha is a common species distributed only on hardwoods in the laurel forest, while Velutarina rufoolivacea has been found for first time in dry laurel forest on the endemic Arbutus canariensis, although this species has been reported previously on other species of the genus Arbutus.

The diversity of lignicolous Helotiales is mainly distributed in the laurel or pine forest between 350–2000 m in altitude. There is only one species in Euphorbia scrub (Cyathicula cyathoidea), and it is at the same time the most ecologically widespread in the Canary Islands, reaching the highest altitude in the archipelago, above 2000 m in the summit-broom scrub, where only one other species has been found (Pseudohelotium sordidulum).

Acknowledgements

The authors thank R. Castro, E. Rodríguez and C. Quijada for their help with the field work. We also thank Maureen Speight and Alexander Doble for the English revision, and Hans-Otto Baral for his help with the identification and corrections. This study was partly funded by the Canarian Government (Ph.D. grant BOC no. 086/29 April — FSE) and by the Autonomous Agency of National Parks (Government of Spain), project no. 811009/ SICOEN. Tsuyoshi Hosoya (National Museum of Nature and Science, Tsukuba) and an anonymous reviewer are also thanked for their comments on an earlier version of this paper.

References

  1. Ainsworth G. C., Sparrow F. K. & Sussman A. S. 1973: The fungi: an advanced treatise. Volume IVA. A taxonomic review with keys: Ascomycetes and fungi imperfecti. — New York & London: Academic Press. Google Scholar

  2. Anonymous 1976: ISCC-NBS Color-name charts illustrated with centroid colors. Inter-Society Color Council. — Washington: National Bureau of Standards. Google Scholar

  3. Baral H. O. 2015: Nomenclatural novelties: H. O. Baral. — Index Fungorum 225: 1–3. Google Scholar

  4. Baral H. O. 2016: Inoperculate discomycetes — Pp. 55–221 in: Jaklitsch W., Baral H. O., Lücking R. & Lumbsch T. (ed.), Syllabus of plant families. A. Engler's Syllabus der Pflanzenfamilien Part 1/2: Ascomycota, ed. 13. — Stuttgart: Borntraeger Science Publishers. Google Scholar

  5. Baral H. O. & Marson G. 2005: In vivo veritas. Over 10000 images of fungi and plants (microscopical drawings, water colour plates, photo macro- & micrographs), with materials on vital taxonomy and xerotolerance, ed. 3. — Privately distributed DVD-ROM. Google Scholar

  6. Baral H. O. & Perić B. 2014: Velutarina bertiscensis and V. alpestris spp. nov., with a redescription of V. rufoolivacea and discussion of its synonyms. — Mycol. Montenegr. 17: 7–52. Google Scholar

  7. Beltrán-Tejera E. 2010: Fungi. — Pp. 25–104 in: Arachavaleta M., Rodríguez S., Zurita N. & García A. (ed.), Lista de especies silvestres de Canarias (Hongos, plantas y animales terrestres) 2009. — Santa Cruz de Tenerife: Gobierno de Canarias. Google Scholar

  8. Beltrán-Tejera E., Bañares A., Leon M. C. & Losada A. 1987: Contribución al estudio de la flora micológica del Monte de Aguas y Pasos (Los Silos, Tenerife) I. — Pp. 213–225 in: Actas del VI Simposio Nacional de Botánica Criptogamica. — Granada: Universidad de Granada. Google Scholar

  9. Beltrán-Tejera E., Bañares A., Rodriguez-Armas L., Losada A. & Leon M. C. 1989: Contribución al estudio de la flora micológica del Monte de Aguas y Pasos (Los Silos, Tenerife) III. — Doc. Mycol. 76: 41–58. Google Scholar

  10. Beltrán-Tejera E., Quijada L., Díaz J., Rodríguez-Armas J. L., Bañares A. & Leal J. 2009: Estudio micológico de El Canal y los Tiles (La Palma, Islas Canarias) V. Datos adicionales. — Anales Jard. Bot. Madrid 66(S1): 93–107. Google Scholar

  11. Beltrán-Tejera E., Rodríguez-Armas J. L., Bañares-Baudet A., Barrera-Acosta J. & Lado C. 2004: Hongos. — Pp. 55–221 in: Beltrán-Tejera E. (ed.), Hongos, líquenes y briófitos del Parque Nacional de la Cladera de Taburiente. — Madrid: Ministerio de Medio Ambiente, O. A. de Parques Nacionales, Serie Técnica. Google Scholar

  12. Beltrán-Tejera E., Rodríguez-Armas J. L., Bañares-Baudet A. & Lado C. 2008: Hongos. — Pp. 41–373 in: Beltrán-Tejera E. (ed.), Hongos, líquenes y briófitos del Parque Nacional de Garajonay (La Gomera, Islas Canarias). — Madrid: Ministerio de Medio Ambiente, O. A. de Parques Nacionales, Serie Técnica. Google Scholar

  13. Beltrán-Tejera E. & Wildpret W. 1975: Táxones nuevos en la flora fúngica canaria. — Vieraea 5: 127–166. Google Scholar

  14. Boudier É. 1885: Nouvelle classification naturelle des discomycètes charnus. — Bull. Trimestriel. Soc. Mycol. France 1: 91–120. Google Scholar

  15. Carpenter S. E. 1981: Monograph of Crocicreas (Ascomycetes, Helotiales, Leotiaceae). — Mem. New York Bot. Gard. 33: 1–290. Google Scholar

  16. Chadefaud M. 1944: Étude d'asques IV. L'asque hemioperculé de Leotia lubrica. — Rev. Mycol. (Paris) 9: 3–13. Google Scholar

  17. Corda A. C. I. 1842: Icones fungorum hucusque cognitorum 5. — Pragae: apud Fridericum Ehrlich. Google Scholar

  18. Dähncke R. M. 1998: Las Setas en La Palma. — Santa Cruz de La Palma: Excelentísimo Cabildo Insular de La Palma y Caja General de Ahorros de Canarias. Google Scholar

  19. Dennis R. W. G. 1956: A revision of the British Helotiaceae in the herbarium of the Royal Botanic Gardens, Kew, with notes on related European species. — Kew: Commonwealth Mycological Institute. Google Scholar

  20. Dennis R. W. G. 1971: New or interesting British microfungi. —  Kew Bull. 25: 335–374. Google Scholar

  21. Dennis R. W. G. 1978: British Ascomycetes. — Vaduz: J. Cramer. Google Scholar

  22. Dennis R. W. G 1986: Fungi of the Hebrides. — Kew: Royal Botanic Gardens. Google Scholar

  23. Dixon J. R. 1975: Chlorosplenium and its segregates I. Introduction and the genus Chlorosplenium. — Mycotaxon 1: 193–237. Google Scholar

  24. Ellis J. B. & Everhart B. M. 1897: New species of North American fungi from various localities. —  Bull. Torrey Bot. Club 24: 277–292. Google Scholar

  25. Gams W. 1999: Report of the Committee for Fungi: 8. —  Taxon 48: 807–810. Google Scholar

  26. Gamundí I. J. & Romero A. 1998: Flora criptogámica de Tierra del Fuego. Fungi, Ascomycetes, Helotiales: Helotiaceae. Tomo X. Fascículo 5. — Buenos Aires: Estudio Sigma S.R.L. Google Scholar

  27. Gargas A. & Taylor J. 1995: Phylogeny of Discomycetes and early radiations of the apothecial Ascomycotina inferred from SSU rDNA sequence data. —  Exp. Mycol. 19: 7–15. Google Scholar

  28. GBIF [Global Biodiversity Information Facility]: GBIF backbone taxonomy. Hyaloscypha. — Published at  http://www.gbif.org/species/2577655; [accessed 1 Mar 2017]; GBIF occurrence download dois with accession dates:  Ascocoryne cylichnium 10.15468/ dl.zpvbyO [21 Apr 2015];  Ascocoryne sarcoides 10.15468/dl.7u3rj2 [28 Apr 2015];  Chlorociboria aeruginascens 10.15468/dl.xxn79v [30 Apr 2015];  Cyathicula cyathoidea 10.15468/dl.hmzrtm [4 May 2015];  Cyathicula hysterioides 10.15468/dl.hsxcfv [1 May 2015];  Durella connivens 10.15468/dl.qvouhs [5 May 2015];  Pseudohelotium sordidulum 10.15468/ dl.smgwpl [5 May 2015]; Strossmayeria basitricha  10.15468/dl.idcklw [4 May 2015];  Velutarina rufoolivacea 10.15468/dl.mjqcdl [4 May 2015]. Google Scholar

  29. González L. & Beltrán-Tejera E. 1987: Contribución al estudio micológico del Monte Agua García y Cerro del Lomo. — Vieraea 17: 369–391. Google Scholar

  30. Han J. G., Hosoya T., Sung G. H. & Shin H. D. 2014: Phylogenetic reassessment of Hyaloscyphaceae sensu lato (Helotiales, Leotiomycetes) based on multigene analyses. —  Fungal Biol. 118: 150–167. Google Scholar

  31. Hansen L. & Knudsen H. (ed.) 2000: Nordic Macromycetes 1. Ascomycetes. — Helsinki: Helsinki University Printing House. Google Scholar

  32. Huhtinen S. 1994: Finnish records of discomycetes: type studies on some Karsten species. — Karstenia 34: 5–12. Google Scholar

  33. Hustad V. P. & Miller A. N. 2011: Phylogenetic placement of four genera within Leotiomycetes. —  N. Amer. Fungi 6: 1–13. Google Scholar

  34. Iglesias P., Fernández Vicente J., Oyarzabal M. & Hidalgo F. 2013: Aportaciones al conocimiento micológico de La Gomera (Islas Canarias) II. — Errotari 10: 111–134. Google Scholar

  35. Iturriaga T. & Korf R. P. 1990: A monograph of the discomycete genus Strossmayeria (Leotiaceae), with comments on its anamorph, Pseudospiropes (Dematiaceae). — Mycotaxon 34: 383–454. Google Scholar

  36. Johnston P. R. & Park D. 2005: Chlorociboria (Fungi, Helotiales) in New Zealand. —  New Zealand J. Bot. 43: 679–719. Google Scholar

  37. Johnston P. R., Park D., Baral H. O., Galán R., Platas G. & Tena R. 2014: The phylogenetic relationships of Torrendiella and Hymenotorrendiella gen. nov. within the Leotiomycetes. —  Phytotaxa 177: 1–25. Google Scholar

  38. Karasch P., Dämon W., Jaklitsch W. & Baral H. O. 2005: Beiträge zur Pilzflora der Kanaren-Insel La Palma 2. Weitere bemerkenswerte Pilzfunde auf Chamaecytisus proliferus. — Oesterr. Bot. Z. 14: 275–289. Google Scholar

  39. Karsten P. A. 1869: Monographia Pezizarum Fennicarum. — Not. Sällsk. Fauna Fl. Fenn. Förh., n.s., 7: 99–206. Google Scholar

  40. Kirk P. M., Cannon P. F., Minier D. W. & Stalper J. A. 2008: Ainsworth and Bisby's dictionary of the fungi, ed. 10. — Wallingford: CAB International. Google Scholar

  41. Korf R. P., Iturriaga T. & Lizoň P. 1996: (1254) Proposal to conserve the family name Helotiaceae (Fungi). —  Taxon 45: 683–684. Google Scholar

  42. Kučera V. & Lizoň P. 2005: Ascocoryne striata, comb, nov. – Mycotaxon 93: 163–165. Google Scholar

  43. Kummer V. 2002: Rutstroemia fruticeti und Velutarina rufoolivacea — zwei wenig beachtete Besiedler abgestorbener Rubus fruticosus-Ruten. —  Feddes Repert. 113: 96–106. Google Scholar

  44. Landvik S. 1996: Phylogenetic rDNA studies of Discomycetes (Ascomycota). — Ph.D. Thesis, Department of Ecological Botany, Umeå University. Google Scholar

  45. Lindau G. 1893: Übersicht über die bisher bekannten Arten der Gattung Thunbergia L. f. — Bot. Jahrb. Syst. 17(Beibl. 41): 31–43. Google Scholar

  46. Marson G., Schultheis B. & Tholl M. T. 1996: Journées luxembourgeoises de mycology vernale (1995). — Bull. Soc. Naturalistes Luxemb. 97: 135–145. Google Scholar

  47. Martínez D. 2000: Setas: recorrido fotográfico por los Montes de Tenerife. — Santa Cruz de Tenerife: Servicio de Publicaciones, Caja General de Ahorros de Canarias. Google Scholar

  48. Medardi G. 2004: Etudes sur le genre Durella. — Documents mycologiques 33: 29–35. Google Scholar

  49. Nannfeldt J. Z. 1932: Studien über die Morphologie und Systematik der nicht-lichenisierten inoperculaten Discomyceten. — Nova Acta Regiae Soc. Sci. Upsal., ser. 4, 8(2): 1–368. Google Scholar

  50. Pande A. 2008: Ascomycetes of peninsular India. — India: Scientific Publishers. Google Scholar

  51. Pärtel K., Baral H. O., Tamm H. & Põldmaa K. 2017: Evidence for the polyphyly of Encoelia and Encoelioideae with reconsideration of respective families in Leotiomycetes. —  Fungal Diversity 82: 183–219. Google Scholar

  52. Penzig A. J. O. & Saccardo P. A. 1902: Diagnoses fungorum novorum in insula Java collectorum. Ser III. — Malpighia 15: 201–260. Google Scholar

  53. Quijada L., Huhtinen S. & Beltrán-Tejera E. 2015: Studies in Hyaloscyphaceae associated with major vegetation types in the Canary Islands I: Cistella and Hyphodiscus. —  Willdenowia 45: 131–146. Google Scholar

  54. Rehm H. 1882: Beiträge zur Ascomyceten Flora der deutschen Alpen und Voralpen. — Hedwigia 21: 97–103. Google Scholar

  55. Rehm H. (ed.) 1896: Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz, ed. 2, 1. Pilze. 3. Ascomyceten: Hysteriaceen und Discomyceten. — Leipzig: Eduard Kummer. Google Scholar

  56. Roll-Hansen F. & Roll-Hansen H. 1979: Ascocoryne sarcoides and Ascocoryne cylichnium. Descriptions and comparison. — Norweg. J. Bot. 26: 193–206. Google Scholar

  57. Seifert K. A. 1989: Coryne trichophora, comb. nov., and the implications of its conidiomatal anatomy. — Stud. Mycol. 31: 157–164. Google Scholar

  58. Stasińska M. & Sotek Z. 2004: Ascocoryne turficola (Fungi, Ascomycetes), a species new to Poland. —  Acta Soc. Bot. Poloniae 73: 61–64. Google Scholar

  59. Svrček M. 1987: New or less known Discomycetes XVI. — Česká Mykol. 41: 88–96. Google Scholar

  60. Urries J. 1957: Hongos microscópicos de Canarias. — Las Palmas de Gran Canaria: Publicaciones Museo Canario. Google Scholar

  61. Van-Vooren N. 2009: Notule sur quelques Helotiales printaniers remarquables. — Bull. Mycol. Bot. Dauphiné-Savoie 194: 53–58. Google Scholar

  62. Verkley G. J. M. 1994: Ultrastructure of the ascus apical apparatus in Leotia lubrica and some Geoglossaceae (Leotiales, Ascomycotina). Persoonia 15: 405–430. Google Scholar

  63. Verkley G. J. M. 1995: The ascus apical apparatus in Leotiales: An evaluation of ultrastructural characters as phylogenetic markers in the families Sclerotiniaceae, Leotiaceae, and Geoglossaceae. — Leiden: Rijksherbarium/Hortus Botanicus. Google Scholar

  64. Wang Z., Binder M., Schoch C. L., Johnston P. R., Spatafora J. W. & Hibbett D. S. 2006: Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny. —  Molec. Phylogen. Evol. 41: 295–312. Google Scholar

  65. Zhuang W. Y. 1999: Fungal flora of tropical Guangxi: Discomycetes of tropical China. IV — more fungi from Guangxi. — Mycotaxon 72: 325–337. Google Scholar

© 2017 The Authors · This open-access article is distributed under the CC BY 4.0 licence
Luis Quijada, Miguel Ribes, Rubén Negrín, and Esperanza Beltrán-Tejera "Lignicolous species of Helotiales associated with major vegetation types in the Canary Islands," Willdenowia 47(3), 271-291, (1 November 2017). https://doi.org/10.3372/wi.47.47310
Received: 26 April 2017; Accepted: 1 September 2017; Published: 1 November 2017
JOURNAL ARTICLE
21 PAGES


SHARE
ARTICLE IMPACT
Back to Top