Translator Disclaimer
1 October 2013 The Diversity of Shell Matrix Proteins: Genome-Wide Investigation of the Pearl Oyster, Pinctada fucata
Author Affiliations +
Abstract

In molluscs, shell matrix proteins are associated with biomineralization, a biologically controlled process that involves nucleation and growth of calcium carbonate crystals. Identification and characterization of shell matrix proteins are important for better understanding of the adaptive radiation of a large variety of molluscs. We searched the draft genome sequence of the pearl oyster Pinctada fucata and annotated 30 different kinds of shell matrix proteins. Of these, we could identified Perlucin, ependymin-related protein and SPARC as common genes shared by bivalves and gastropods; however, most gastropod shell matrix proteins were not found in the P. fucata genome. Glycinerich proteins were conserved in the genus Pinctada. Another important finding with regard to these annotated genes was that numerous shell matrix proteins are encoded by more than one gene; e.g., three ACCBP-like proteins, three CaLPs, five chitin synthase-like proteins, two N16 proteins (pearlins), 10 N19 proteins, two nacreins, four Pifs, nine shematrins, two prismalin-14 proteins, and 21 tyrosinases. This diversity of shell matrix proteins may be implicated in the morphological diversity of mollusc shells. The annotated genes reported here can be searched in P. fucata gene models version 1.1 and genome assembly version 1.0 ( http://marinegenomics.oist.jp/pinctada_fucata). These genes should provide a useful resource for studies of the genetic basis of biomineralization and evaluation of the role of shell matrix proteins as an evolutionary toolkit among the molluscs.

© 2013 Zoological Society of Japan
Received: 11 June 2012; Accepted: 1 October 2012; Published: 1 October 2013
JOURNAL ARTICLE
16 PAGES


SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top