Open Access
Translator Disclaimer
1 December 2003 Echolocation Performance and Call Structure in the Megachiropteran Fruit-Bat Rousettus aegyptiacus
Dean Andrew Waters, Claudia Vollrath
Author Affiliations +
Abstract

The structure of the calls made by the echolocating fruit bat Rousettus aegyptiacus while flying within a flight tunnel were investigated. Calls are impulsive clicks lasting around 250 μs, with most energy occurring during the first 100 μs. Such a call duration is much shorter than that previously reported for this species. The ability of R. aegyptiacus to detect and avoid obstacles was tested in both the light and total darkness. Bats were able to detect and avoid 6 mm diameter wires significantly more often than 1.3 mm diameter wires when tested in the light. In the dark, the same relationship held, with no decrease in the ability to detect and avoid the obstacles. Bats used echolocation in both the light and the dark conditions. The simple impulsive clicks used in echolocation by this species are thus able to detect wires of at least 6 mm in diameter and probably smaller. The detection problems associated with very short duration signals is discussed. The possession of both a good visual system, and a good echolocation system in this species has implications for the evolution of echolocation in bats.

LITERATURE CITED

1.

H. T. Arita , and M. B. Fenton . 1997. Flight and echolocation in the ecology and evolution of bats. Trends in Ecology and Evolution, 12: 53–58. Google Scholar

2.

W. W. L. Au 1980. Echolocation signals of the Atlantic bottlenose dolphin (Tursiops truncatus) in open waters. Pp. 251–282, in Animal sonar systems ( R. G. Busnel and J. F. Fish , eds.). Plenum, New York, 1082 pp. Google Scholar

3.

W. W. L. Au 1993. The sonar of dolphins. Springer-Verlag, New York, 277 pp. Google Scholar

4.

R. J. Baker , M. J. Novacek , and N. B. Simmons . 1991. On the monophyly of bats. Systematic Zoology, 40: 216–231. Google Scholar

5.

G. P. Bell , and M. B. Fenton . 1986. Visual acuity, sensitivity and binocularity in a gleaning insectivorous bat, Macrotus californicus (Chiroptera: Phyllostomidae). Animal Behaviour, 34: 409–114. Google Scholar

6.

R. B. Coles , M. Konishi , and J. D. Pettigrew . 1987. Hearing and echolocation in the Australian grey swiftlet, Collocalia spodiopygia. Journal of Experimental Biology, 129: 365–371. Google Scholar

7.

R. Dooling 1980. Behaviour and psychophysics of hearing in birds. Pp. 261–288, in Comparative studies of hearing in vertebrates ( A. Popper and R. Fay , eds.). Springer-Verlag, Berlin, 457 pp. Google Scholar

8.

J. Eklöf , T. Tranefors , and L. B. Vazquez . 2002. Precedence cues in the emballonurid bat Balantiopteryx plicata. Mammalian Biology: 67, 42–16. Google Scholar

9.

J. H. Fullard , R. M. R. Barclay , and D. W. Thomas . 1993. Echolocation in free-flying Atiu swiftlets (Aerodramus sawtelli). Biotropica, 25: 334–339. Google Scholar

10.

D. Griffin 1953. Acoustic orientation in the oilbird, Steatornis. Proceedings of the National Academy of Sciences, 39: 884–893. Google Scholar

11.

D. R. Griffin , A. Novick , and M. Kornfield . 1958. The sensitivity of echolocation in the fruit bat Rousettus. Biological Bulletin, 155: 107–113. Google Scholar

12.

P. H. Harvey , and J. R. Krebs . 1990. Comparing brains. Science, 249: 140–146. Google Scholar

13.

R. S. Heffner , G. Koay , and H. E. Heffner . 1999. Sound localisation in an Old-world fruit bat (Rousettus aegyptiacus): acuity, use of binaural cues, and relationship to vision. Journal of Comparative Psychology, 113: 297–306. Google Scholar

14.

O. W. Henson , and H.-U. Schnitzler . 1980. Performance of airborne biosonar systems: II. Vertebrates other than Microchiroptera. Pp. 138–195, in Animal sonar systems ( R. G. Busnel and J. F. Fish , eds.). Plenum, New York, 1082 pp. Google Scholar

15.

H. Herbert 1985. Echoortungsverhalten des Flughundes Rousettus aegyptiacus (Megachiroptera). Zeitschrift für Säugetierkunde, 50: 141–152. Google Scholar

16.

P. Holler , and U. Schmidt . 1996. The orientation behaviour of the lesser spearnosed bat, Phyllostomus discolor (Chiroptera) in a model roost — concurrence of visual, echoacoustical and endogenous spatial information. Journal of Comparative Physiology A, 179: 245–254. Google Scholar

17.

G. Koay , R. S. Heffner , and H. E. Heffner . 1998. Hearing in a Megachiropteran fruit bat (Rousettus aegyptiacus). Journal of Comparative Psychology, 112: 371–382. Google Scholar

18.

E. Kulzer 1956. Flughunde erzeugen Orientierungslaute durch Zungenschlag. Naturwissenschaften, 43: 117–118. Google Scholar

19.

F. P. Möhres , and E. Kulzer . 1956. Über die Orientierung der Flughund (Chiroptera-Pteropodidae). Zeitschrift für Vergleichende Physiologie, 38: 1–29. Google Scholar

20.

G. Neuweiler 1962. Bau und Leistung des Flughundes (Pteropus giganteus). Zeitschrift für Vergleichende Physiologie, 46: 13–56. Google Scholar

21.

G. Neuweiler 1983. Echolocation and adaptivity to ecological constraints. Pp. 280–302, in Neuroethology and behavioural physiology ( F. Huber and H. Markle , eds.). Springer-Verlag, Berlin, 412 pp. Google Scholar

22.

K. S. Norris , and G. W. Harvey 1974. Sound transmission in the porpoise head. Journal of the Acoustical Society of America, 56: 659–664. Google Scholar

23.

J. D. Pettigrew 1991a. A fruitful, wrong hypothesis? Response to Baker, Novacek, and Simmons. Systematic Zoology, 40: 231–239. Google Scholar

24.

J. D. Pettigrew 1991b. Wings or brain? Convergent evolution in the origins of bats. Systematic Zoology, 40: 199–216. Google Scholar

25.

J. D. Pettigrew , B. Dreher , C. S. Hopkins , M. J. McCall , and M. Brown . 1988. Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: Implications for visual acuity. Brain Behavior and Evolution, 32: 39–56. Google Scholar

26.

J. D. Pye , and A. Pye . 1988. Echolocation sounds and hearing in the fruit bat Rousettus. Pp. 1–12, in Advances in audiology 5: Measurement in hearing and balance ( S. D. G. Stephens and S. Prasansuk , eds.). Karger, Basel, 278 pp. Google Scholar

27.

L. H. Roberts 1975. Confirmation of the pulse production mechanism of Rousettus. Journal of Mammalogy, 56: 218–220. Google Scholar

28.

S. Schmidt , and J. Thaller . 1994. Temporal summation in the echolocating bat Tadarida brasiliensis. Hearing Research, 77: 125–134. Google Scholar

29.

H-U. Schnitzler , C. F. Moss , and A. Denzinger . 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18: 386–394. Google Scholar

30.

J. A Simmons , M. J. Ferragamo , P. A. Saillant , T. Haresign , J. M. Wotton , S. P. Dear , and D. N. Lee . 1995. Auditory dimensions of acoustic images in echolocation. Pp. 146–190, in Hearing by bats ( A. N. Popper and R. R. Fay , eds.). Springer-Verlag, New York, 515 pp. Google Scholar

31.

N. B. Simmons , and J. H. Geisler . 1998. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of the American Museum of Natural History, 235: 4–182. Google Scholar

32.

J. R. Speakman 1993. The evolution of echolocation for predation. Symposia of the Zoological Society of London, 65: 39–63. Google Scholar

33.

M. S. Springer , E. C. Teeling , O. Madsen , M. J. Syanhope , and W. W. De Jong . 2001. Integrated fossil and molecular data reconstruct bat echolocation. Proceedings of the National Academy of Science, 98: 6241–6246. Google Scholar

34.

R. A. Suthers , and D. H. Hector . 1982. Mechanism for the production of echolocating clicks by the grey swiftlet, Collocalia spodiopygia. Journal of Comparative Physiology, 148: 457–170. Google Scholar

35.

R. A. Suthers , and D. H. Hector . 1985. The physiology of vocalisation by the echolocating oilbird, Steatornis caripensis. Journal of Comparative Physiology A, 156: 243–266. Google Scholar

36.

R. A. Suthers , and C. A. Summers . 1980. Behavioral audiogram and masked thresholds of the megachiropteran echolocating bat, Rousettus. Journal of Comparative Physiology, 136: 227–233. Google Scholar

37.

E. C. Teeling , O. Madsen , R. A. Van Den Bussche , W. W. De Jong , and M. J. Stanhope . 2002. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proceedings of the National Academy of Science, 99: 1431–1436. Google Scholar

38.

D. A. Waters , and G. Jones . 1995. Echolocation call structure and intensity in five species of insectivorous bats. Journal of Experimental Biology, 198: 475–189. Google Scholar

39.

D. A. Waters , J. Rydell and G. Jones . 1995. Echolocation call design and limits on prey size: a case study using the aerial-hawking bat Nyctalus leisleri. Behavioral Ecology and Sociobiology, 37: 321–328. Google Scholar

40.

L. Wiegrebe , and S. Schmidt . 1996. Temporal integration in the echolocating bat, Megaderma lyra. Hearing Research, 102: 35–12. Google Scholar
© Museum and Institute of Zoology PAS
Dean Andrew Waters and Claudia Vollrath "Echolocation Performance and Call Structure in the Megachiropteran Fruit-Bat Rousettus aegyptiacus," Acta Chiropterologica 5(2), 209-219, (1 December 2003). https://doi.org/10.3161/001.005.0205
Received: 14 March 2003; Accepted: 17 September 2003; Published: 1 December 2003
JOURNAL ARTICLE
11 PAGES


Share
SHARE
KEYWORDS
bat evolution
echolocation
Rousettus
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top