Translator Disclaimer
1 January 2003 Molecular Phylogenetics of the Chiropteran Family Vespertilionidae
Steven R. Hoofer, Ronald A. Van Den Bussche
Author Affiliations +
Abstract

Limited information from existing data sets and the tremendous amount of diversity in number and kind within the chiropteran family Vespertilionidae (about one-third of all bat species) have hampered efforts to provide adequate assessments of long-standing genealogic hypotheses (e.g., monophyly of the family and of the five subfamilies). We generated approximately 2.6 kilobase pairs of mitochondrial DNA (mtDNA) sequence ecompassing three adjacent genes (12S rRNA, tRNAVal, 16S rRNA) for 120 vespertilionids representing 110 species, 37 of 44 genera, and all subfamilies. We assessed monophyly of Vespertilionidae in initial analyses of 171 taxa including representatives of all bat families (except the monotypic Craseonycteridae), and assessed lower-level relationships by analysis of several truncated taxon sets. Phylogenetic analysis of ribosomal gene sequences provides well-supported resolution for vespertilionid relationships across taxonomic levels. Furthermore, the resolution is not heavily burdened by alignment of ambiguous regions of the ribosomal gene sequences, and topologies and levels of support produced by two phylogenetic methods (Bayesian and Parsimony) agreed markedly. Our analyses suggest relationships that support many parts of the traditional classification but which also support several changes. The majority of these changes also receives support from other data sources, particularly bacular and karyotypic data. We make more than 20 taxonomic conclusions or recommendations and construct a working classification for vespertilionoid bats. Highlights include: Miniopterus (subfamily Miniopterinae) is recognized in its own family, Miniopteridae, as it represents an extremely divergent lineage relative to other vespertilionids, and in some analyses is sister to the molossids and natalids; all other vespertilionids examined form a well-supported clade; two of the traditional subfamilies within Vespertilionidae (sensu stricto) are monophyletic, Murininae and Kerivoulinae; Nyctophilinae has no validity and Vespertilioninae is paraphyletic relative to the position of Myotis; Myotis is sister to a clade containing Kerivoulinae and Murininae and is recognized in its own subfamily, Myotinae; Myotis subgenera Leuconoe, Selysius, and Myotis are polyphyletic, and a subgeneric classification reflecting geography is suggested, broadening subgenus Myotis to include the sampled Old World species, and allocating the sampled New World species to another subgenus (Aeorestes Fitzinger, 1870); Vespertilioninae (excluding Myotis) is monophyletic; Pipistrellus-like bats (i.e., the traditional tribe Vespertilionini) are divided into three tribes (Nycticeiini; Pipistrellini; Vespertilionini); and support for three tribes of Pipistrellus-like bats has several implications at the genus level. Overall, this study offers a robust working hypothesis for vespertilionid relationships and provides a good starting point for new investigations into the evolutionary history of Vespertilionidae.

LITERATURE CITED

1.

M. Adams, P. R. Baverstock, C. H. S. Watts, and T. Reardon . 1987a. Electrophoretic resolution of species boundaries in Australian Microchiroptera. I. Eptesicus (Chiroptera: Vespertilionidae). Australian Journal of Science, 40: 143–162. Google Scholar

2.

M. Adams, P. R. Baverstock, C. H. S. Watts, and T. Reardon . 1987b. Electrophoretic resolution of species boundaries in Australian Microchiroptera. II. The Pipistrellus group (Chiroptera: Vespertilionidae). Australian Journal of Science, 40: 163–170. Google Scholar

3.

M. E. Alfaro , S. Zoller , and F. Lutzoni . 2003. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution, 20: 255–266. Google Scholar

4.

Y. Alvarez , J. Juste , E. Tabares , A. Garridopertierra , C. Ibanez , and J. M. Bautista . 1999. Molecular phylogeny and morphological homoplasy in fruitbats. Molecular Biology and Evolution, 16: 1061–1067. Google Scholar

5.

S. Anderson , M. H. L. De Bruiln , A. R. Coulson , I. C. Eperon , F. Sanger , and I. G. Young . 1982. Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. Journal of Molecular Biology, 156: 683–717. Google Scholar

6.

J. C. Avise 1986. Mitochondrial DNA and the evolutionary genetics of higher animals. Philosophical Transactions of the Royal Society of London B, 12: 325–342. Google Scholar

7.

J. C. Avise , W. S. Nelson , and C. G. Sibley . 1994. Why one-kilobase sequences from mitochondrial DNA fail to solve the hoatzin phylogenetic enigma. Molecular Phylogenetics and Evolution, 3: 175–184. Google Scholar

8.

R. J. Baker 1970. The role of karyotypes in phylogenetic studies of bats. Pp. 303–312, in About bats: a chiropteran biology symposium ( B. H. Slaughter and D. W. Walton , eds.). Southern Methodist University Press, Dallas, Texas, 339 pp. Google Scholar

9.

R. J. Baker , and J. L. Patton . 1967. Karyotypes and karyotypic variation of North American vespertilionid bats. Journal of Mammalogy, 48: 270–286. Google Scholar

10.

R. J. Baker , J. W. Bickham , and M. L. Arnold . 1985. Chromosomal evolution in Rhogeessa (Chiroptera: Vespertilionidae): possible speciation by centric fusions. Evolution, 39: 233–243. Google Scholar

11.

R. J. Baker , J. C. Patton , H. H. Genoways , and J. W. Bickham . 1988. Genic studies of Lasiurus (Chiroptera: Vespertilionidae). Occasional Papers, The Museum, Texas Tech University, 117: 1–15. Google Scholar

12.

R. J. Baker, C. A. Porter, J. C. Patton, and R. A. Van Den Bussche . 2000. Systematics of bats of the family Phyllostomidae based on RAG2 DNA sequences. Occasional Papers, Museum of Texas Tech University, 202: i + 1–16. Google Scholar

13.

R. J. Baker, S. R. Hoofer, C. A. Porter, and R. A. Van Den Bussche . 2003. Diversification among New World leaf-nosed bats: an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequence. Occasional Papers, Museum of Texas TechUniversity, 230: i + 1–32. Google Scholar

14.

L. J. Barkley 1984. Evolutionary relationships and natural history of Tomopeas ravus (Mammalia: Chiroptera). M.Sci. Thesis, Louisiana State University, Baton Rouge, 100 pp. Google Scholar

15.

P. R. Baverstock, and C. Moritz . 1996. Project design. Pp. 17–27, in Molecular systematics. Second edition ( D. M. Hillis, C. Moritz and B. K. Mable , eds.). Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, 655 pp. Google Scholar

16.

F. A. Benedict 1957. Hair structure as a generic character in bats. University of California Publications in Zoology, 59: i-iv + 285–548. Google Scholar

17.

M. L. Berbee 1996. Loculoascomycete origins and evolution of filamentous ascomycetes morphology based on 18S rRNA gene sequence data. Molecular Biology and Evolution, 13: 462–470. Google Scholar

18.

K. Beuttell , and J. B. Losos . 1999. Ecological morphology of Caribbean anoles. Herpetological Monograph, 13: 1–28. Google Scholar

19.

J. W. Bickham 1979a. Banded karyotypes of 11 species of American bats (genus Myotis). Cytologia 44: 789–797. Google Scholar

20.

J. W. Bickham 1979b. Chromosomal variation and evolutionary relationships of vespertilionid bats. Journal of Mammalogy, 60: 350–363. Google Scholar

21.

J. W. Bickham 1987. Chromosomal variation among seven species of lasiurine bats (Chiroptera: Vespertilionidae). Journal of Mammalogy, 68: 837–842. Google Scholar

22.

J. W. Bickham , K. Mcbee , and D. A. Schlitter . 1986. Chromosomal variation among seven species of Myotis (Chiroptera: Vespertilionidae). Journal of Mammalogy, 67: 746–750. Google Scholar

23.

W. Bogdanowicz , S. Kasper , and R. D. Owen . 1998. Phylogeny of plecotine bats: reevaluation of morphological and chromosomal data. Journal of Mammalogy, 79: 78–90. Google Scholar

24.

F. Bossuyt , and M. C. Milinkovitch . 2000. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Science, USA, 97: 6585–6590. Google Scholar

25.

W. G. Breed , and R. W. Inns . 1985. Variation in sperm morphology of Australian Vespertilionidae and its possible phylogenetic significance. Mammalia, 49: 105–108. Google Scholar

26.

K. Bremer 1992. Ancestral areas: a cladistic reinterpretation of the center of origin concept. Systematic Biology, 41: 436–445. Google Scholar

27.

W. M. Brown 1985. The mitochondrial genome of animals. Pp. 95–130, in Molecular evolutionary genetics: monographs in evolutionary biology ( R. J. Macintyre , ed.). Plenum, New York, 610 pp. Google Scholar

28.

T. D. Bruns , R. Vilgalys , S. M. Barns , D. Gonzalez , D. S. Hibbett , D. J. Lane , L. Simon , S. Stickel , T. M. Szaro , W. G. Weisburg , and M. L. Sogin . 1992. Evolutionary relationships within the fungi: Analyses of nuclear small subunit rRNA sequences. Molecular Phylogenetics and Evolution, 1: 231–241. Google Scholar

29.

T. R. Buckley , P. Arensburger , C. Simon , and G. K. Chambers . 2002. Combined data, Bayesian phylogenetics, and the origin of the New Zealand Cicada genera. Systematic Biology, 51: 4–18. Google Scholar

30.

I. Cassens , S. Vicario , V. G. Waddell , H. Balchowsky , D. Van Belle , W. Ding , C. Fan , R. S. Lal Mohan , P. C. Simoes-Lopes , R. Bastida , A. Meyer , M. J. Stanhope , and M. C. Milinkovitch . 2000. Independent adaptation to riverine habitats allowed survival of ancient cetacean lineages. Proceedings of the National Academy of Science, USA, 97: 11343–11347. Google Scholar

31.

S. Cerchio , and P. Tucker . 1998. Influence of alignment on the mtDNA phylogeny of Cetacea: questionable support for a Mysticeti/Physeteroidea clade. Systematic Biology, 47: 336–-344. Google Scholar

32.

G. B. Corbet, and J. E. Hill . 1986. A world list of mammalian species. Second edition. British Museum of Natural History, 254 pp. Google Scholar

33.

G. B. Corbet, and J. E. Hill . 1991. A world list of mammalian species. Third edition. Natural History Museum Publications, Oxford University Press, New York, 243 pp. Google Scholar

34.

G. B. Corbet, and J. E. Hill . 1992. The mammals of the Indomalayan region. Natural History Museum Publications, Oxford University Press, New York, 488 pp. Google Scholar

35.

G. Csorba , and L. Lee . 1999. A new species of vespertilionid bat from Taiwan and a revision of the taxonomic status of Arielulus and Thainycteris (Chiroptera: Vespertilionidae). Journal of Zoology (London), 248: 361–367. Google Scholar

36.

N. J. Czaplewski, G. S. Morgan, and S. A. Mcleod . In press. Chiroptera. In Evolution of Tertiary mammals of North America, Vol. 2 ( C. Jams, G. Gunnell, and M. Uhen , eds.). Cambridge University Press, Cambridge, UK. Google Scholar

37.

K. De Quieroz , and J. Gauthier . 1990. Phylogeny as a central principle in taxonomy: Phylogenetic definitions of taxon names. Systematic Zoology, 39: 307–322. Google Scholar

38.

K. De Quieroz , and J. Gauthier . 1992. Phylogenetic taxonomy. Annual Review of Ecology and Systematics, 23: 449–480. Google Scholar

39.

K. De Quieroz , and J. Gauthier . 1994. Toward a phylogenetic system of biological nomenclature. Trends in Ecology and Evolution, 9: 27–31. Google Scholar

40.

P. De Rijk , Y. Van De Peer , S. Chapella , and R. D. Wachter . 1994. Database on the structure of the large ribosomal subunit RNA. Nucleic Acids Research, 22: 3495–3501. Google Scholar

41.

R. Desalle, C. Wray, and R. Absher . 1994. Computational problems in molecular systematics. Pp. 353–370, in Molecular ecology and evolution: approaches and applications ( B. Schierwater, B. Streit, G. P. Wagner and R. Desalle , eds.). Birkhäuser, Basel, 622 pp. Google Scholar

42.

G. E. Dobson 1875. On the genus Chalinolobus, with descriptions of new or little known species. Proceedings of the Zoological Society of London, 3: 381–388. Google Scholar

43.

G. E. Dobson 1878. Catalogue of the Chiroptera in the collection of the British Museum. Trustees of the British Museum, London, 567 pp. Google Scholar

44.

C. J. Douady , F. Delsuc , Y. Boucher , W. F. Doolittle , and J. P. Douzery . 2003. Comparison of Bayesian and Maximum Likelihood bootstrap measure of phylogenetic reliability. Molecular Biology and Evolution, 20: 248–254. Google Scholar

45.

B. Efron , E. Halloran , and S. Holmes . 1996. Bootstrap confidence levels for phylogenetic trees. Proceedings of the National Academy of Science, USA, 93: 13429–13434. Google Scholar

46.

J. L. Eger , and D. A. Schlitter . 2001. A new species of Glauconycteris from West Africa (Chiroptera: Vespertilionidae). Acta Chiropterologica, 3: 1–10. Google Scholar

47.

J. S. Farris 1969. A successive approximations approach to character weighting. Systematic Biology, 18: 374–385. Google Scholar

48.

J. Felsenstein 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27: 401–410. Google Scholar

49.

J. Felsenstein 1981. A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biological Journal of the Linnaean Society, 16: 183–196. Google Scholar

50.

J. Felsenstein 1985. Confidence limits on phytogenies : An approach using the bootstrap. Evolution, 39: 783–791. Google Scholar

51.

M. B. Fenton , and M. R. Barclay . 1980. Myotis lucifugus. Mammalian Species, 142: 1–8. Google Scholar

52.

M. B. Fenton , and W. Bogdanowicz . 2002. Relationships between external morphology and foraging behaviour: bats in the genus Myotis. Canadian Journal of Zoology, 80: 1004–1013. Google Scholar

53.

J. S. Findley 1972. Phenetic relationships among bats of the genus Myotis. Systematic Zoology, 21 : 31–52. Google Scholar

54.

W. M. Fitch , and T. F. Smith . 1983. Optimal sequence alignments. Proceedings of the National Academy of Science, USA, 80: 1382–1386. Google Scholar

55.

G. L. Forman , R. J. Baker , and J. D. Gerber . 1968. Comments on the systematic status of vampire bats (family Desmodontidae). Systematic Zoology, 17: 417–425. Google Scholar

56.

P. W. Freeman 1998. Form, function, and evolution in skulls and teeth of bats. Pp. 140–156, in Bat biology and conservation ( T. H. Kunz and P. A. Racey , eds.). Smithsonian Institution Press, Washington, D.C., 365 pp. Google Scholar

57.

D. R. Frost , and R. M. Timm . 1992. Phylogeny of plecotine bats (Chiroptera: ‘Vespertilionidae’): summary of the evidence and proposal of a logically consistent taxonomy. American Museum Novitates, 3034: 1–16. Google Scholar

58.

J. Gatesy , R. Desalle , and W. Wheeler . 1993. Alignment-ambiguous nucleotide sites and the exclusion of systematic data. Molecular Phylogenetics and Evolution, 2: 152–157. Google Scholar

59.

G. Giribet , and W. C. Wheeler . 1999. On gaps. Molecular Phylogenetics and Evolution, 13: 132–143. Google Scholar

60.

J. Godawa Stormark 1998. Phenetic analysis of Old World Myotis (Chiroptera: Vespertilionidae) based on dental characters. Acta Theriologica, 43: 1–11. Google Scholar

61.

A. Gopalakrishna , and G. C. Chari . 1983. A review of the taxonomic position of Miniopterus based on embryological characters. Current Science, 52: 1176–1180. Google Scholar

62.

A. Gopalakrishna, and K. B. Karim . 1980. Female genital anatomy and the morphogenesis of foetal membranes of Chiroptera and their bearing on the phylogenetic relationships of the group. National Academy of Sciences, India Golden Jubilee Commemoration Volume, 380–428. Google Scholar

63.

M. Gouy , and W.-H. Li . 1989. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature, 339: 145–147. Google Scholar

64.

A. Graybeal 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology, 47: 9–17. Google Scholar

65.

S. Guindon , and O. Gascuel . 2003. A simple, fast, and accurate algorithm to estimate large phytogenies by maximum likelihood. Systematic Biology, 52: 696–704. Google Scholar

66.

B. G. Hall 2001. Phylogenetic trees made easy: a how-to manual for molecular biologists. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, 179 pp. Google Scholar

67.

E. R. Hall , and J. K. Jones Jr . 1961. North American yellow bats, ‘Dasypterus,’ and a list of the named kinds of the genus Lasiurus Gray. University of Kansas Publications, Museum of Natural History, 14: 73–98. Google Scholar

68.

W. J. Hamilton Jr . 1949. The bacula of some North American vespertilionid bats. Journal of Mammalogy, 30: 97–102. Google Scholar

69.

C. O. Handley Jr . 1959. A revision of American bats of the genera Euderma and Plecotus. Proceedings of the United States National Museum, 110:95–246. Google Scholar

70.

C. O. Handley Jr . 1960. Description of new bats from Panama. Proceedings of the United States National Museum, 112: 459–179. Google Scholar

71.

R. W. Hayman, and J. E. Hill . 1971. Order Chiroptera. Part 2. In The mammals of Africa; an identification manual ( J. Meester and H. W. Setzer , eds.). Smithsonian Institution Press, Washington, D.C., 481 pp. Google Scholar

72.

K.-G Heller , and M. Volleth . 1984. Taxonomic position of ‘Pipistrellus societatis’ HILL, 1972 and the karyological characteristics of the genus Eptesicus (Chiroptera: Vespertilionidae). Zeitschrift für Zoologische Systematik und Evolutions-forschung, 22: 65–77. Google Scholar

73.

R. E. Hickson , C. Simon , and S. W. Perrey . 2000. The performance of several multiple-sequence alignment programs in relation to secondary-structure features for an rRNA sequence. Molecular Biology and Evolution, 17: 530–539. Google Scholar

74.

J. E. Hill 1974. A new family, genus and species of bat (Mammalia; Chiroptera) from Thailand. Bulletin of the British Museum of Natural History (Zoology), 27: 301–336. Google Scholar

75.

J. E. Hill , and D. L. Harrison . 1987. The baculum in the Vespertilioninae (Chiroptera: Vespertilionidae) with a systematic review, a synopsis of Pipistrellus and Eptesicus, and the descriptions of a new genus and subgenus. Bulletin of the British Museum of Natural History (Zoology), 52: 225–305. Google Scholar

76.

J. E. Hill , and S. E. Smith . 1981. Craseonycteris thonglongyai. Mammalian Species, 160: 1–4. Google Scholar

77.

J. E. Hill, and J. D. Smith . 1984. Bats: a natural history. University of Texas Press, Austin, 243 pp. Google Scholar

78.

J. E. Hill , and G. Topál . 1973. The affinities of Pipistrellus ridleyi Thomas, 1898 and Glischropus rosseti Oey, 1951 (Chiroptera, Vespertilionidae). Bulletin of the British Museum of Natural History (Zoology), 24: 447–454. Google Scholar

79.

D. M. Hillis 1998. Taxonomic sampling, phylogenetic accuracy, and investigator bias. Systematic Biology, 47: 3–8. Google Scholar

80.

D. M. Hillis , and J. J. Bull . 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42: 182–192. Google Scholar

81.

L. J. Hollar , and M. S. Springer . 1997. Old World fruitbat phytogeny: Evidence for convergent evolution and an endemic African clade. Proceedings of the National Academy of Science, USA, 94: 5716–5721. Google Scholar

82.

S. R. Hoofer , and R. A. Van Den Bussche . 2001. Phylogenetic relationships of plecotine bats and allies based on mitochondrial ribosomal sequences. Journal of Mammalogy, 82: 131–137. Google Scholar

83.

S. R. Hoofer , S. A. Reeder , E. W. Hansen , and R. A. Van Den Bussche . 2003. Molecular phylogenetics and taxonomic review of noctilionoid and vespertilionoid bats (Chiroptera: Yangochiroptera). Journal of Mammalogy, 84: 809–821. Google Scholar

84.

I. Horáček 1991. Enigma of Otonycteris: ecology, relationship, classification. Myotis, 29: 17–30. Google Scholar

85.

I. Horáček 2001. On the early history of vespertilionid bats in Europe: The Lower Miocene record from the Bohemian Massif. Lynx (Praha), 32: 123–154. Google Scholar

86.

I. Horáček , and V. Hanák . 1985. Generic status of Pipistrellus savii (Bonaparte, 1837) and remarks on systematics of the genus Pipistrellus. Bat Research News, 26: 62. Google Scholar

87.

I. Horáček, and V. Hanák . 1986. Generic status of Pipistrellus savii and comments on classification of the genus Pipistrellus (Chiroptera, Vespertilionidae). Myotis, 23–24: 9–16. Google Scholar

88.

J. P. Huelsenbeck 1995. The performance of phylogenetic methods in simulation. Systematic Biology, 44: 17–48. Google Scholar

89.

J. P. Huelsenbeck , and F. Ronquist . 2001. MrBayes: Bayesian inference of phytogeny. Bioinformatics, 17: 754–755. Google Scholar

90.

J. P. Huelsenbeck , B. Larget , R. E. Miller , and F. Ronquist . 2002. Potential applications and pitfalls of Bayesian inference of phytogeny. Systematic Biology, 51: 673–688. Google Scholar

91.

P. Hulva, and I. Horáček . Craseonycteris thonglongyai (Chiropera: Craseonycteridae) is a rhinolopid: molecular evidence from cytochrome b. Acta Chiropterologica, 4: 107–120. Google Scholar

92.

International Commission On Zoological Nomenclature. 1999. International code of zoological nomenclature. Fourth edition. International Trust for Zoological Nomenclature, London, xxix + 306 pp. Google Scholar

93.

G. Jones , and J. M. V. Rayner . 1988. Flight performance, foraging tactics and echolocation in free-living Daubenton's bats Myotis daubentoni (Chiroptera: Vespertilionidae). Journal of Zoology (London), 215: 113–132. Google Scholar

94.

J. K. Jones Jr ., J. Arroyo-Cabrales , and R. D. Owen . 1988. Revised checklist of bats (Chiroptera) of Mexico and Central America. Occasional Papers, The Museum, Texas Tech University, 120: 1–34. Google Scholar

95.

K. E. Jones , A. Purvis , A Maclarnon , O. R. P. Bininda-Emonds , and N. B. Simmons . 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews, 77: 223–259. Google Scholar

96.

K. B. Karim, and K. P. Bhatnagar . 2000. Early embryology, fetal membranes, and placentation. Pp. 59–92, in Ontogeny, functional ecology, and evolution of bats ( R. A. Adams and S. C. Pedersen , eds.). Cambridge University Press, Cambridge, 398 pp. Google Scholar

97.

K. Kawai , M. Nikaido , M. Harada , S. Matsumura , L.-K. Lin , Y. Wu , M. Hasegawa , and N. Okada . 2002. Intra- and interfamily relationships of Vespertilionidae inferred by various molecular markers including SINE insertion data. Journal of Molecular Evolution, 55: 284–301. Google Scholar

98.

K. Kawai , M. Nikaido , M. Harada , S. Matsumura , L.-K. Lin , Y. Wu , M. Hasegawa , and N. Okada . 2003. The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences. Molecular Phylogenetics and Evolution, 28: 297–307. Google Scholar

99.

T. C. Kearney , M. Volleth , G. Contrafatto , and P. J. Taylor . 2002. Systematic implications of chromosome GTG-band and bacula morphology for Southern African Eptesicus and Pipistrellus and several other species of Vespertilioninae (Chiroptera: Vespertilionidae). Acta Chiropterologica, 4: 55–76. Google Scholar

100.

M. Kennedy , A. M. Paterson , J. C. Morales , S. Parsons , A. P. Winnington , and H. G. Spencer . 1999. The long and short of it: branch lengths and the problem of placing the New Zealand shorttailed bat, Mystacina. Molecular Phylogenetics and Evolution, 13: 405–416. Google Scholar

101.

J. A. W. Kirsch , J. M. Hutcheon , D. G. P. Byrnes , and B. D. Lloyd . 1998. Affinities and historical zoogeography of the New Zealand short-tailed bat, Mystacina tuberculata Gray 1843, inferred from DNA-hybridization comparisons. Journal of Mammalian Evolution, 5: 33–64. Google Scholar

102.

D. J. Kitchener , and N. Caputi . 1985. Systematic revision of Australian Scoteanax and Scotorepens (Chiroptera: Vespertilionidae), with remarks on relationships to other Nycticeiini. Records of the Western Australian Museum, 12: 85–146. Google Scholar

103.

D. J. Kitchener , N. Caputi , and B. Jones . 1986. Revision of Australo-Papuan Pipistrellus and of Falsistrellus (Microchiroptera: Vespertilionidae). Records of the West Australian Museum, 12: 435–495. Google Scholar

104.

K. F. Koopman 1970. Zoogeography of bats. Pp. 29–50, in About bats: a chiropteran biology symposium ( B. H. Slaughter and D. W. Walton , eds.). Southern Methodist University Press, Dallas, 339 pp. Google Scholar

105.

K. F. Koopman 1971. Taxonomic notes on Chalinolobus and Glauconycteris (Chiroptera, Vespertilionidae). American Museum Novitates, 245: 1–10. Google Scholar

106.

K. F. Koopman 1984. Bats. Pp. 145–186, in Orders and families of Recent mammals of the World ( S. Anderson and J. K. Jones Jr ., eds.). John Wiley and Sons, New York, 686 pp. Google Scholar

107.

K. F. Koopman 1985. A synopsis of the families of bats, part VII. Bat Research News, 25: 25–27 [dated 1984 but issued 1985]. Google Scholar

108.

K. F. Koopman 1993. Order Chiroptera. Pp. 137–241, in Mammal species of the World, a taxonomic and geographic reference, second edition ( D. E. Wilson and D. M. Reeder , eds.). Smithsonian Institution Press, Washington, D.C., 1207 pp. Google Scholar

109.

K. F. Koopman 1994. Chiroptera: systematics. Handbook of Zoology, Vol. 8, Part 60: Mamalia. Walter de Gruyter, Berlin, 224 pp. Google Scholar

110.

K. F. Koopman, and E. L. Cockrum . 1967. Bats. Pp. 109–150, in Recent mammals of the world. Synopsis of families ( S. Anderson and J. K. Jones Jr ., eds.). The Ronald Press Company, New York, 453 pp. Google Scholar

111.

K. F. Koopman, and J. K. Jones Jr . 1970. Classification of bats. Pp. 22–28, in About bats: a chiropteran biology symposium ( B. H. Slaughter and D. W. Walton , eds.). Southern Methodist University Press, Dallas, Texas, 339 pp. Google Scholar

112.

A. P. Kuzjakin 1950. Letučije myši. Sovetskaja nauka, Moskva, 444 pp. Google Scholar

113.

J. Lake 1991. The order of sequence alignment can bias the selection of tree topology. Molecular Biology and Evolution, 8: 378–385. Google Scholar

114.

B. Larget , and D. L. Simon . 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16: 750–759. Google Scholar

115.

A. D. Leaché , and T. W. Reeder . 2002. Molecular systematics of the eastern fence lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches. Systematic Biology, 51: 44–68. Google Scholar

116.

T. E. Lee Jr. , S. R. Hoofer , and R. A. Van Den Bussche . 2002. Molecular phylogenetics and taxonomic revision of the genus Tonatia (Chiroptera: Phyllostomidae). Journal of Mammalogy, 83: 49–57. Google Scholar

117.

H. Leniec , S. Fedyk , and A. L. Ruprecht . 1987. Chromosomes of some species of vespertilionid bats IV: New data on the plecotine bats. Acta Theriologica, 32: 307–314. Google Scholar

118.

P. O. Lewis 2001. Phylogenetic systematics turns over a new leaf. Trends in Ecology and Evolution, 16: 30–37. Google Scholar

119.

S. Li 1996. Phylogenetic tree construction using Markov chain Monte Carlo. Ph.D. Thesis, Ohio State University, Columbus, USA. Google Scholar

120.

D. G. Lloyd , and V. L. Calder . 1991. Multi-residue gaps, a class of molecular characters with exceptional reliability for phylogenetic analyses. Journal of Evolutionary Biology, 4: 9–21. Google Scholar

121.

J. L. Longmire , M. Maltbie , and R. J. Baker . 1997. Use of ‘lysis buffer’ in DNA isolation and its implication for museum collections. Occasional Papers, The Museum, Texas Tech University, 163: 1–3. Google Scholar

122.

J. B. Losos , T. R. Jackman , A. Larson , K. De Queiroz , and L. Rodriguez-Schettino . 1998. Contingency and determinism in replicated adaptive radiations of Island lizards. Science, 279: 2115–2117. Google Scholar

123.

F. Lutzoni 1995. Phylogeny of lichen- and nonlichen-forming omphalinoid mushrooms and the utility of testing for combinability among multiple data sets. Systematic Biology, 46: 373–406. Google Scholar

124.

F. Lutzoni , P. Wagner , V. Reeb , and S. Zoller . 2000. Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology, 49: 628–651. Google Scholar

125.

W. P. Maddison , M. J. Donoghue , and D. R. Maddison . 1984. Outgroup analysis and parsimony. Systematic Zoology, 33: 83–103. Google Scholar

126.

L. H. Mathews 1942. Notes on the genitalia and reproduction of some African bats. Proceedings of the Zoological Society of London B, 111: 289–346. Google Scholar

127.

B. Mau 1996. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Ph. D. Thesis, University of Wisconsin, Madison, USA. Google Scholar

128.

F. Mayer , and O. Von Helversen . 2001. Cryptic diversity in European bats. Proceedings of the Royal Society of London B, 268: 1825–1832. Google Scholar

129.

K. Mcbee , J. W. Bickham , S. Yenbutra , J. Nabhitabhata , and D. A. Schlitter . 1986. Standard karyology of nine species of vespertilionid bats (Chiroptera: Vespertilionidae) from Thailand. Annals of Carnegie Museum, 55: 95–116. Google Scholar

130.

K. Mcbee , D. A. Schlitter , and R. L. Robbins . 1987. Systematics of African bats of the genus Eptesicus (Mammalia: Vespertiliondae). 2. Karyotypes of African species and their generic relationships. Annals of Carnegie Museum, 56: 213–222. Google Scholar

131.

M. C. Mckenna, and S. K. Bell . 1997. Classification of mammals above the species level. Columbia University Press, New York, 631 pp. Google Scholar

132.

P. Mein , and Y. Tupinier . 1977. Formule dentaire et position systématique du Minioptère (Mammalia, Chiroptera). Mammalia, 41: 207–211. Google Scholar

133.

H. Menu 1984. Révision du statut de Pipistrellus subflavus (F. Cuvier, 1832). Proposition d'un taxon générique nouveau: Perimyotis nov. gen. Mammalia, 48: 409–416. Google Scholar

134.

H. Menu 1985. Morphotypes dentaires actuels et fossils des Chiroptères Vespertilioninés. Ie partie: Etude des morphologies dentaires. Palaeovertebrata, 15: 71–128. Google Scholar

135.

H. Menu 1987. Morphotypes dentaires actuels et fossils des Chiroptères Vespertilioninés. IIème partie: Implications systematiques et phylogeniques. Palaeovertebrata, 17: 77–150. Google Scholar

136.

G. S. Miller Jr . 1906. Twelve new genera of bats. Proceedings of the Biological Society of Washington, 19: 83–85. Google Scholar

137.

G. S. Miller Jr . 1907. The families and genera of bats. Bulletin of the United States National Museum, 57: 1–282. Google Scholar

138.

G. S. Miller Jr , and G. M. Allen . 1928. The American bats of the genera Myotis and Pizonyx. Bulletin of the United States National Museum, 144: 1–218. Google Scholar

139.

D. P. Mindell 1991. Aligning DNA sequences: homology and phylogenetic weighting. Pp. 73–89, in Phylogenetic analysis of DNA sequences ( M. Miyamoto and J. Cracraft , eds.). Oxford University Press, Oxford, 358 pp. Google Scholar

140.

J. C. Morales , and J. W. Bickham . 1995. Molecular systematics of the genus Lasiurus (Chiroptera: Vespertilionidae) based on restriction-site maps of the mitochondrial ribosomal genes. Journal of Mammalogy, 76: 730–749. Google Scholar

141.

J. C. Morales , S. W. Ballinger , J. W. Bickham , I. F. Greenbaum , and D. A. Schlitter . 1991. Genetic relationships among eight species of Eptesicus and Pipistrellus (Chiroptera: Vespertilionidae). Journal of Mammalogy, 72: 286–291. Google Scholar

142.

T. Mori , and T. A. Uchida . 1982. Changes in the morphology and behaviour of spermatozoa between copulation and fertilization in the Japanese long-fingered bat, Miniopterus schreibersii fuliginosus. Journal of Reproduction and Fertility, 65: 23–28. Google Scholar

143.

C. Moritz , T. E. Dowling , and W. M. Brown . 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18: 269–292. Google Scholar

144.

D. A. Morrison , and J. T. Ellis . 1997. Effects of nucleotide sequence alignment on phytogeny estimation: a case study of 18S rDNAs of Apicomplexa. Molecular Biology and Evolution, 14: 428–441. Google Scholar

145.

H. W. Mossman 1953. The genital system and the fetal membranes as criteria for mammalian phytogeny and taxonomy. Journal of Mammalogy, 34: 289–298. Google Scholar

146.

H. W. Mossman 1987. Vertebrate fetal membranes: Comparative ontogeny and morphology; evolution; phylogenetic significance; basic function; research opportunities. Rutgers University Press, New Brunswick, New Jersey, 383 pp. Google Scholar

147.

W. J. Murphy , E. Eizirik , S. J. O'brien , O. Madsen , M. Scally , C. J. Douady , E. Teeling , O. A. Ryder , M. J. Stanhope , W. W. De Jong , and M. S. Springer . 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294: 2348–2351. Google Scholar

148.

R. M. Nowak 1999. Walker's mammals of the World. Sixth edition, Vol. 1, The Johns Hopkins University Press, Baltimore, Maryland, 836 pp. Google Scholar

149.

G. Orti , and A. Meyer . 1997. The radiation of Characiform fishes and the limits of resolution of mitochondrial ribosomal DNA sequences. Systematic Biology, 46: 75–100. Google Scholar

150.

R. Perasso , A. Baroin , H. Liang , J. Bachellerie , and A. Adoutte . 1989. Origin of the algae. Nature, 339: 142–144. Google Scholar

151.

R. L. Peterson 1982. A new species of Glauconycteris from the east coast of Kenya (Chiroptera: Vespertilionidae). Canadian Journal of Zoology, 60: 2521–2525. Google Scholar

152.

R. L. Peterson , and D. A. Smith . 1973. A new species of Glauconycteris (Vespertilionidae, Chiroptera). Royal Ontario Museum Life Sciences Occasional Papers, 22: 1–9. Google Scholar

153.

E. D. Pierson 1986. Molecular systematics of the Microchiroptera: higher taxon relationships and biogeography. Ph.D. Thesis, University of California, Berkeley, 262 pp. Google Scholar

154.

R. H. Pine , D. C. Carter , and R. K. Laval . 1971. Status of Bauerus Van Gelder and its relationships to other nyctophiline bats. Journal of Mammalogy, 52: 663–669. Google Scholar

155.

C. Pitra , and J. Veits . 2000. Use of mitochondrial DNA sequences to test the Ceratomorpha (Perissodactyla: Mammalia) hypothesis. Journal of Zoological, Systematics, and Evolutionary Research, 38: 65–72. Google Scholar

156.

S. Poe 1998. The effect of taxonomic sampling on accuracy of phytogeny estimation: test case of a known phytogeny. Molecular Biology and Evolution, 15: 1086–1090. Google Scholar

157.

D. Posada , and K. A. Crandall . 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817–818. Google Scholar

158.

G. E. Quinet 1965. Myotis misonnei, chiroptère de l'Oligocène de Hoogbutsel. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, 41: 1–11. Google Scholar

159.

M. B. Qumsiyeh , and J. W. Bickham . 1993. Chromosomes and relationships of long-eared bats of the genera Plecotus and Otonycteris. Journal of Mammalogy, 74: 376–382. Google Scholar

160.

B. Rannala , and Z. H. Yang . 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution, 43: 304–311. Google Scholar

161.

I. L. Rautenbach , G. N. Bronner , and D. A. Schlitter . 1993. Karyotypic data and attendant systematic implications for the bats of southern Africa. Koedoe, 36: 87–104. Google Scholar

162.

R. L. Reep, and K. P. Bhatnagar . 2000. Brain ontogeny and ecomorphology in bats. Pp. 93–136, in Ontogeny, functional ecology, and evolution of bats ( R. A. Adams and S. C. Pedersen , eds.). Cambridge University Press, Cambridge, 398 pp. Google Scholar

163.

C. B. Robbins , F. De Vree , and V. Van Cakenberghe . 1985. A systematic revision of the African bat genus Scotophilus (Vespertilionidae). Annales Musée de l'Afrique Centrale, Sciences Zoologiques, 246: 51–84. Google Scholar

164.

A. Roberts 1926. Some new South African mammals and some changes in nomenclature. Annals of the Transvaal Museum, 11: 245–263. Google Scholar

165.

D. R. Rosevear 1965. The bats of West Africa. Trustees of the British Museum (Natural History), London, 418 pp. Google Scholar

166.

L. A. Ruedas , T. E. Lee Jr. , J. W. Bickham , and D. A. Schlitter . 1990. Chromosomes of five species of vespertilionid bats from Africa. Journal of Mammalogy, 71: 94–100. Google Scholar

167.

L. A. Ruedas, J. Salazar-Bravo, J. W. Dragoo, and T. L. Yates . 2000. The importance of being earnest: what, if anything, constitutes a ‘specimen examined? ’ Molecular Phylogenetics and Evolution, 17: 129–132. Google Scholar

168.

M. Ruedi , and R. Arlettaz . 1991. Biochemical systematics of the Savi's bat (Hypsugo savii) (Chiroptera: Vespertilionidae). Zeitschrift für Zoologische Systematik und Evolutions-forschung, 29: 115–122. Google Scholar

169.

M. Ruedi , and F. Mayer . 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution, 21:436–448. Google Scholar

170.

R. M. Ryan 1966. A new and some imperfectly known Australian Chalinolobus and the taxonomic status of African Glauconycteris. Journal of Mammalogy, 47: 86–91. Google Scholar

171.

B. Slgé 1974. Données nouvelles sur le genre Stehlinia (Vespertilionoidea, Chiroptera) du Paléogène d'Europe. Palaeovertebrata, 6: 253–272. Google Scholar

172.

N. B. Simmons 1998. A reappraisal of interfamilial relationships of bats. Pp. 3–26, in Bat biology and conservation ( T. H. Kunz and P. A. Racey , eds.). Smithsonian Institution Press, Washington, D.C., 365 pp. Google Scholar

173.

N. B. Simmons 2000. Bat phylogeny: an evolutionary context for comparative studies. Pp. 9–58, in Ontogeny, functional ecology, and evolution of bats ( R. A. Adams and S. C. Pedersen , eds.). Cambridge University Press, Cambridge, UK, 398 pp. Google Scholar

174.

N. B. Simmons , and T. M. Conway . 2001. Phylogenetic relationships of mormoopid bats (Chiroptera: Mormoopidae) based on morphological data. Bulletin of the American Museum of Natural History, 258: 1–97. Google Scholar

175.

N. B. Simmons , and J. H. Geisler . 1998. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of the American Museum of Natural History, 235: 1–182. Google Scholar

176.

C. Simon , F. Frati , A. Beckenbach , B. Crespi , H. Liu , and P. Flook . 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87: 651–701. Google Scholar

177.

G. G. Simpson 1945. The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85: 1–350. Google Scholar

178.

J. D. Skinner, and R. H. N. Smithers . 1990. The mammals of the southern African subregion. University of Pretoria, South Africa, 771 pp. Google Scholar

179.

J. D. Smith 1972. Systematics of the chiropteran family Mormoopidae. University of Kansas Museum of Natural History, Miscellaneous Publication, 56: 1–132. Google Scholar

180.

J. D. Smith 1976. Chiropteran phylogeny. Pp. 49–69, in Biology of bats of the New World Phyllostomatidae, Part I ( R. J. Baker, J. K. Jones Jr., and D. C. Carter Eds.). Special Publications, The Museum, Texas Tech University, 10: 1–218. Google Scholar

181.

J. D. Smith 1980. Chiropteran phylogenetics: Introduction. Pp. 233–244, in Proceedings of the Fifth International Bat Research Conference ( D. E. Wilson and A. L. Gardner , eds.). Texas Tech University Press, Lubbock, 434 pp. Google Scholar

182.

M. S. Springer 1997. Molecular clocks and the timing of the placental and marsupial radiations in relation to the Cretaceous-Tertiary boundary. Journal of Mammalian Evolution, 4: 285–302. Google Scholar

183.

M. S. Springer , and E. Douzery . 1996. Secondary structure, conservation of functional sites, and rates of evolution among mammalian mitochondrial 12S rRNA genes based on sequences from placentals, marsupials, and a monotreme. Journal of Molecular Evolution, 43: 357–373. Google Scholar

184.

P. D. Sudman , L. J. Barkley , and M. S. Hafner . 1994. Familial affinity of Tomopeas ravus (Chiroptera) based on protein electrophoretic and cytochrome b sequence data. Journal of Mammalogy, 75: 365–377. Google Scholar

185.

D. L. Swofford 2002. PAUP* phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts. Google Scholar

186.

D. L. Swofford, and G. J. Olsen . 1990. Phylogeny reconstruction. Pp. 411–501, in Molecular systematics ( D. M. Hillis and C. Moritz , eds.). Sinauer Associates, Sunderland, Massachusetts, 588 pp. Google Scholar

187.

D. L. Swofford, G. J. Olsen, P. J. Waddell, and D. M. Hillis . 1996. Phylogenetic inference. Pp. 407–514, in Molecular systematics. Second edition ( D. M. Hillis, C. Moritz, and B. K. Mable , eds.). Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, 655 pp. Google Scholar

188.

G. H. H. Tate 1941a. Results of the Archbold expeditions. No. 39. A review of the genus Myotis (Chiroptera) of Eurasia, with special reference to species occurring in the East Indies. Bulletin of the American Museum of Natural History, 78: 537–565. Google Scholar

189.

G. H. H. Tate 1941b. Results of the Archbold expeditions. No. 40. Notes on vespertilionid bats of the subfamilies Miniopterinae, Murininae, Kerivoulinae, and Nyctophylinae. Bulletin of the American Museum of Natural History, 80: 567–597. Google Scholar

190.

G. H. H. Tate 1942. Results of the Archbold expeditions. No. 47. Review of the vespertilionine bats, with special attention to genera and species of the Archbold collections. Bulletin of the American Museum of Natural History, 80: 221–297. Google Scholar

191.

E. C. Teeling , M. Scally , D. J. Kao , M. L. Romagnoli , M. S. Springer , and M. J. Stanhope . 2000. Molecular evidence regarding the origin of echolocation and flight in bats. Nature, 403: 188–192. Google Scholar

192.

E. C. Teeling , O. Madsen , R. A. Van Den Bussche , W. W. De Jong , M. J. Stanhope , and M S. Springer . 2002. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proceedings of the National Academy of Science, USA, 99: 1431–1436. Google Scholar

193.

E. C. Teeling , O. Madsen , W. J. Murphy , M. S. Springer , and S. J. O'brien . 2003. Nuclear gene sequences confirm an ancient link between New Zealand's short-tailed bat and South American noctilionoid bats. Molecular Phylogenetics and Evolution, 28: 308–319. Google Scholar

194.

J. D. Thompson , T. J. Gibson , F. Plewniak , F. Jeanmougin , and D. G. Higgins . 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24: 4876–4882. Google Scholar

195.

M. P. Tiunov 1989. The taxonomic implication of different morphological systems in bats. Pp. 67–76, in European bat research 1987 ( V. Hanák, I. Horáček, and J. Gaisler , eds.). Charles University Press, Praha, 718 pp. Google Scholar

196.

G. Topál 1970. On the systematic status of Pipistrellus annectans Dobson, 1871 and Myotis primula Thomas, 1920 (Mammalia). Annales Historico-Naturales Musei Nationalis Hungarici, 62: 373–379. Google Scholar

197.

R. Torpin 1976. Eutherian mammalian phytogeny based upon embryology. The Anatomical Record, 184: 547–548. Google Scholar

198.

R. Tumlison , and M. E. Douglas . 1992. Parsimony analysis and the phylogeny of the plecotine bats (Chiroptera: Vespertilionidae). Journal of Mammalogy, 73: 276–285. Google Scholar

199.

J. M. Turbeville , K G. Field , and R. A. Raff . 1992. Phylogenetic position of the Nemertini, inferred from 18S rRNA sequences: Molecular data as a test of morphological character analysis. Molecular Biology and Evolution, 9: 235–249. Google Scholar

200.

R. A. Van Den Bussche , and S. R. Hoofer . 2000. Further evidence for inclusion of the New Zealand short-tailed bat (Mystacina tuberculata) within Noctilionoidea. Journal of Mammalogy, 81: 865–874. Google Scholar

201.

R. A. Van Den Bussche , and S. R. Hoofer . 2001. Evaluating monophyly of Nataloidea (Chiroptera) with mitochondrial DNA sequences. Journal of Mammalogy, 82: 320–327. Google Scholar

202.

R. A. Van Den Bussche, and S. R. Hoofer . In press. Phylogenetic relationships of Recent chiropteran families and the importance of choosing appropriate outgroup taxa. Journal of Mammalogy. Google Scholar

203.

R. A. Van Den Bussche , S. R. Hoofer , and N. B. Simmons . 2002. Phylogenetic relationships of mormoopid bats using mitochondrial gene sequences and morphology. Journal of Mammalogy, 83: 40–48. Google Scholar

204.

R. A. Van Den Bussche , S. A. Reeder , E. W. Hansen , and S. R. Hoofer . 2003. Utility of the dentin matrix protein 1 (DMP1) gene for resolving mammalian intraordinal phylogenetic relationships. Molecular Phylogenetics and Evolution, 26: 89–101. Google Scholar

205.

M. Van Der Merwe 1985. The vestigial teeth of Miniopterus fraterculus and Miniopterus inflatus. South African Journal of Zoology, 20: 250–252. Google Scholar

206.

L. Van Valen 1979. The evolution of bats. Evolutionary Theory, 4: 103–121. Google Scholar

207.

E. Verheyen , L. Ruber , J. Snoeks , and A. Meyer . 1996. Mitochondrial phylogeography of rockdwelling cichlid fishes reveals evolutionary influence of historical lake level fluctuations of Lake Tanganyika, Africa. Philosophical Transactions of the Royal Society of London B, 351: 797–805. Google Scholar

208.

M. Volleth 1987. Differences in the location of nucleolus organizer regions in European vespertilionid bats. Cytogenetics and Cell Genetics, 44: 186–197. Google Scholar

209.

M. Volleth 1989. Karyotypevolution und phylogenie der Vespertilionidae (Mammalia: Chiroptera). Ph.D. Thesis, University of Erlangen-Nürnberg, Erlangen, Germany. Google Scholar

210.

M. Volleth, and K.-G. Heller . 1994a. Karyosystematics of plecotine bats: a reevaluation of chromosomal data. Journal of Mammalogy, 75: 602–606. Google Scholar

211.

M. Volleth, and K.-G. Heller . 1994b. Phylogenetic relationships of vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis. Zeitschrift für Zoologische Systematik und Evolutions-forschung, 32: 11–34. Google Scholar

212.

M. Volleth , and C. R. Tidemann . 1989. Chromosome studies in three genera of Australian vespertilionid bats and their systematic implications. Zeitschrift für Säugetierkunde, 54: 215–222. Google Scholar

213.

M. Volleth , and C. R. Tidemann . 1991. The origin of the Australian Vespertilioninae bats, as indicated by chromosomal studies. Zeitschrift für Säugetierkunde, 56: 321–330. Google Scholar

214.

M. Volleth , G. Bronner , M. C. Göpfert , K.-G. Heller , O. Von Helversen , and H.-S. Yong . 2001. Karyotype comparison and phylogenetic relationships of Pipistrellus-like bats (Vespertilionidae; Chiroptera; Mammalia). Chromosome Research, 9: 25–46. Google Scholar

215.

M. Volleth , K.-G. Heller , R. A. Pfeiffer , and H. Hameister . 2002. A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families. Chromosome Research, 10: 477–497. Google Scholar

216.

M. S. Waterman , M. Eggert , and F. Lander . 1992. Parametric sequence comparisons. Proceedings of the National Academy of Sciences, USA, 89: 6090–6093. Google Scholar

217.

W. C. Wheeler 1995. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology, 44: 321–331. Google Scholar

218.

W. C. Wheeler , J. Gatesy , and R. Desalle . 1995. Elision: a method for accommodating multiple molecular sequence alignments with alignmentambiguous sites. Molecular Phylogenetics and Evolution, 4: 1–9. Google Scholar

219.

W. Wheeler, and D. Gladstein . 1991. MALIGN: Program and documentation-version 1.5. American Museum of Natural History, New York. Google Scholar

220.

S. Whelan , P. Liň , and N. Goldman . 2001. Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends in Genetics, 17: 262–272. Google Scholar

221.

M. F. Whiting , J. C. Carpenter , Q. D. Wheeler , and W. C. Wheeler . 1997. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology, 46: 1–68. Google Scholar

222.

J. J. Wiens 1998. Combining data sets with different phylogenetic histories. Systematic Biology, 47: 568–581. Google Scholar

223.

T. P. Wilcox , D. J. Zwickl , T. A. Heath , and D. M. Hillis . 2002. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution, 25: 361–371. Google Scholar

224.

D. F. Williams , and M. A. Mares . 1978. Karyological affinities of the South American big-eared bat, Histiotus montanus (Vespertilionidae). Journal of Mammalogy, 59: 844–846. Google Scholar

225.

A. C. Wilson , R. L. Cann , S. M. Carr , M. George , U. B. Gyllensten , K. M. Helm-Bychowski , R. G. Higuchi , S. R. Palumbi , E. M. Prager , R. D. Sage , and M. Stoneging . 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society, 26: 375–400. Google Scholar

226.

Z. Yang 1996. Maximum likelihood models for combined analyses of multiple sequence data. Journal of Molecular Evolution, 42: 587–596. Google Scholar

227.

M. Yoshiyuki 1989. A systematic study of the Japanese Chiroptera. National Science Museum, Tokyo, 258 pp. Google Scholar

228.

J. Zima , and I. Horáček . 1985. Synopsis of karyotypes of vespertilionid bats (Mammalia: Chiroptera). Acta Universitatis Carolinae-Biologica, 1981: 311–329. Google Scholar

229.

J. Zima, M. Volleth, I. Horáček, J. Červený, and M. Macholan . 1992. Karyotypes of two species of bats, Otonycteris hemprichii and Pipistrellus tramatus (Chiroptera: Vespertilionidae). Pp. 237–242, in Prague studies in mammalogy ( I. Horáček and V. Vohralík , eds.). Charles University Press, Praha, 245 pp. Google Scholar
© Museum and Institute of Zoology PAS
Steven R. Hoofer and Ronald A. Van Den Bussche "Molecular Phylogenetics of the Chiropteran Family Vespertilionidae," Acta Chiropterologica 5(suppl), 1-63, (1 January 2003). https://doi.org/10.3161/001.005.s101
Received: 2 June 2003; Accepted: 4 September 2003; Published: 1 January 2003
JOURNAL ARTICLE
63 PAGES


SHARE
ARTICLE IMPACT
Back to Top