Translator Disclaimer
1 December 2006 Sexing Red-Necked Grebes Podiceps grisegena by Molecular Techniques and Morphology
Author Affiliations +
Abstract

Sexual size dimorphism was analysed in the Red- necked Grebe in southeast Poland. A DNA-based procedure was utilised to sex individuals and to assess the accuracy of morphological criteria for the sex identification of adult breeding birds: discriminant analysis on the sample level and within-pair comparisons. Males were significantly larger than females in all body measurements used in the discriminant function selection process. Owing to considerable overlap in measurements, however, the sexes cannot be accurately separated by biometrics at the population scale. Sexual dimorphism was most pronounced in bill length measured from the corner of the gape to the tip, but only 79% of individuals were correctly identified on the basis of this parameter alone. When two variables, bill length and wing length, were combined, the discriminant function was of similar efficiency (80%) in determining the sex. The accuracy level of sexing may be improved by comparing mates within pairs: combined comparisons of bill length and body mass were as accurate as the genetic technique, but sex assignment was restricted to 76% of the measured pairs.

REFERENCES

  1. D. G. Ainley , L. B. Spear , R. C. Wood 1985. Sexual color and size variation in the South Polar Skua. Condor 87: 427–428. Google Scholar

  2. Z. M. Bocheński 1994. The comparative osteology of grebes (Aves: Podicipediformes) and its systematic implications. Acta zool. cracov. 37: 191–346. Google Scholar

  3. A. M. Breault , K. M. Cheng 1990. Use of submerged mist nets to capture diving birds. J. Field Ornithol. 61: 328–330. Google Scholar

  4. R. W. Butler , A. M. Breault , T. M. Sullivan 1990. Measuring animals through a telescope. J. Field Ornithol. 61: 111–114. Google Scholar

  5. R. Casaux , A. Baroni 2000. Sexual size dimorphism in the Antarctic Shag. Waterbirds 23: 489–93. Google Scholar

  6. H. Ellegren , B. C. Sheldon 1997. New tools for sex identification and the study of sex allocation in birds. Trends Ecol. Evol. 12: 255–259. Google Scholar

  7. D. A. Dawson , S. Darby , F. M. Hunter , A. P. Krupa , I. L. Jones , T. Burke 2001. A critique of CHD-based molecular sexing protocols illustrated by a Z-chromosome polymorphism detected in auklets. Mol. Ecol. Notes 1: 201–204. Google Scholar

  8. R. S. Ferguson 1980. A technique for live-trapping nesting Horned Grebes. J. Field Ornithol. 51: 179–180. Google Scholar

  9. J. Fjeldså 1973. Territory and the regulation of the population density and recruitment in the horned grebe Podiceps auritus arcticus Boje, 1882. Videns. Meddr Dansk Naturh. Foren. 136: 117–189. Google Scholar

  10. J. Fjeldså 1980. Post mortem changes in measurements of grebes. Bull. Br. Ornithol. Club 100: 151–154. Google Scholar

  11. J. Fjeldså 1983. Ecological character displacement and character release in grebes Podicipedidae. Ibis 125: 463–481. Google Scholar

  12. K. L. Fletcher , K. C. Hamer 2003. Sexing terns using biometrics: the advantage of within-pair comparisons. Bird Study 50: 78–83. Google Scholar

  13. R. Griffiths , S. Daan , C. Dijkstra 1996. Sex identification in birds using two CHD genes. Proc. R. Soc. Lond. B 263: 1251–1256. Google Scholar

  14. J. R. Jehl Jr. , P. K. Yochem 1987. A technique for capturing Eared Grebes (Podiceps nigricollis). J. Field Ornithol. 58: 231–233. Google Scholar

  15. P. P. R. Jodice , R. B. Lanctot , V. A. Gill , D. D. Roby , S. A. Hatch 2000. Sexing adult Black-legged Kittiwakes by DNA, behavior and morphology. Waterbirds 23: 405–415. Google Scholar

  16. N. W. Kahn , J. St. John , W. Quinn 1998. Chromosome-specific intron size differences in the avian CHD gene provide an efficient method for sex identification in birds. Auk 115: 1074–1078. Google Scholar

  17. B. E. Lyon 1994. A technique for measuring precocial chicks from photographs. Condor 96: 805–809. Google Scholar

  18. M. L. Mallory , M. R. Forbes 2005. Sex discrimination and measurement bias in Northern Fulmars Fulmarus glacialis from the Canadian Arctic. Ardea 93: 25–36. Google Scholar

  19. J. Moreno 1989. Strategies of mass change in breeding birds. Biol. J. Linn. Soc. 37: 297–310. Google Scholar

  20. T. Piersma 1988. Morphological variation in a European population of Great Crested Grebes Podiceps cristatus in relation to age, sex and season. J. Ornithol. 129: 299–316. Google Scholar

  21. B. H. Pugesek , K. L. Diem 1990. The relationship between reproduction and survival in known-aged California Gulls. Ecology 71: 811–817. Google Scholar

  22. J. Sambrook , E. F. Fritsch , T. Maniatis 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor, N.Y. Google Scholar

  23. R. W. Storer 1969. The behavior of the Horned Grebe in spring. Condor 71: 180–205. Google Scholar

  24. B. E. Stout , G. L. Nuechterlein 1999. Red-necked Grebe Podiceps grisegena. In: A. Poole , F. Gill (eds). The Birds of North America, No. 465. Philadelphia. Google Scholar

  25. J. A. van Franeker , C. J. F. ter Braak 1993. A generalized discriminant for sexing fulmarine petrels from external measurements. Auk 110: 492–502. Google Scholar

  26. K. Weidinger , J. A. van Franeker 1998. Applicability of external measurements to sexing of the Cape Petrel at within-pair, within-population and between-population scales. J. Zool. 245: 473–482. Google Scholar

Janusz Kloskowski, Przemysław Grela, Jarosław Krogulec, Gaska Michał, and Marek Tchórzewski "Sexing Red-Necked Grebes Podiceps grisegena by Molecular Techniques and Morphology," Acta Ornithologica 41(2), 176-180, (1 December 2006). https://doi.org/10.3161/068.041.0203
Received: 1 July 2006; Accepted: 1 November 2006; Published: 1 December 2006
JOURNAL ARTICLE
5 PAGES


SHARE
ARTICLE IMPACT
Back to Top