Open Access
How to translate text using browser tools
20 May 2011 Anisodontherium from the Late Miocene of North-Western Argentina
Diego Brandoni, Jaime E. Powell, Osvaldo E. González
Author Affiliations +
Abstract

The fossil record of Megatheriinae (Tardigrada, Megatheriidae) in Argentina extends from the Colloncuran (Middle Miocene of Patagonia) to the Lujanian (Late Pleistocene—Early Holocene of the Pampean region). In the Late Miocene of north-western Argentina, Megatheriinae is represented by just three species belonging to a single genus, Pyramiodontherium. Here, we describe a partial mandible and the phalanges of a third digit of the manus recovered from the Saladillo Formation (Upper Miocene) of Tucumán Province, and assign them to Anisodontherium sp. Anisodontherium is primarily characterized by mesiodistally compressed molariforms, an anterior margin of the coronoid process located posterior to m4, and a posterior margin of the mandibular symphysis located anterior to m1. While these features can also be observed in A. halmyronomum from the Arroyo Chasicó Formation (Buenos Aires Province, Pampean region), Anisodontherium sp. is smaller and more slender than the former. The shape of each molariform of Anisodontherium affects the total length of the molariform tooth row, and thus the interpretation of some characters used in cladistic and paleobiological analyses. The material described here adds to the knowledge of the mandibular and dental anatomy of early megatheriines. In addition, the occurrence of Anisodotherium in Tucumán Province provides the first record of this genus outside the Pampean region, and increases the diversity of megatheriines during the Late Miocene—Pliocene of north-western Argentina.

Introduction

Xenarthrans are characterized by a particular suite of skeletal modifications setting them apart from all other placental mammals (McDonald 2003). Molecular evidence indicates that they represent one of the four major mammalian clades (Delsuc et al. 2001, 2002; Madsen et al. 2001; Murphy et al. 2001; Moller-Krull et al. 2007; Delsuc and Douzery 2008; Prasad et al. 2008). Xenarthra, including fossil species, consist of two major clades: Cingulata (armadillos, pampatheres, and glyptodonts), characterized by the development of bony dermal armor and an omnivorous, carnivorous or herbivorous diet (see Vizcaíno 2009); and Pilosa, in turn comprising Vermilingua and Tardigrada. While both of the latter two taxa pursue either terrestrial or arboreal lifestyles, Vermilingua (anteaters) show marked adaptations to myrmecophagy, whereas Tardigrada (sloths and ground sloths) are generally herbivorous (see McDonald and De Iuliis 2008; Vizcaíno 2009; Brandoni et al. 2010).

The Tardigrada (sensu Latham and Davies 1795) constitute one of the characteristic mammalian groups of the Cenozoic of South America. After the Deseadan (Late Oligocene), tardigrades become abundant in the fossil record and are represented by several lineages, such as Megatheriidae, Nothrotheriidae, Megalonychidae, and Mylodontidae (Gaudin 2004, McDonald and De Iuliis 2008), which became especially diversified during the Late Miocene—Pleistocene.

The fossil record of Megatheriinae (Tardigrada, Megatheriidae) in Argentina extends from the Colloncuran (Middle Miocene of Patagonia) to the Lujanian (Late Pleistocene—Early Holocene of the Pampean region), when the clade was represented primarily by Megatherium americanum Cuvier, 1796. Although recent efforts (e.g., Carlini et al. 2002; De Iuliis et al. 2004, 2008; Brandoni 2006; Brandoni and De Iuliis 2007; Brandoni and Scillato-Yané 2007; Brandoni and Carlini 2009) have increased our knowledge of the older (Middle Miocene—Pliocene) megatheriines of Argentina, the often fragmentary nature of their remains has resulted in a relative dearth of studies. Overall, the list of valid megatheriine genera from the Middle Miocene—Pliocene of Argentina currently comprises Megathericulus Ameghino, 1904, Eomegatherium Kraglievich, 1926, Promegatherium Ameghino, 1883, Megatheridium Cabrera, 1928, Pliomegatherium Kraglievich, 1930, Megatheriops C. Ameghino and Kraglievich, 1921, Plesiomegatherium Roth, 1911, Megatheridium Cabrera, 1928, Pyramiodontherium Rovereto, 1914, and Anisodontherium Brandoni and De Iuliis, 2007.

Fig. 1.

A. Map of Argentina showing the distribution of fossil Megatheriinae during the Late Miocene—Pliocene. 1, Abra Pampa (Jujuy Province); 2, Saladillo Formation (Tucumán Province); 3, Andalhuala and Corral Quemado formations (Catamarca Province); 4, Toro Negro Formation (La Rioja Province); 5, Huayquerías de San Carlos (Mendoza Province); 6, “conglomerado osífero”, Ituzaingó Formation (Entre Ríos Province); 7, Arroyo Chasicó Formation (Buenos Aires Province); 8, Róo Negro Formation (Río Negro Province). B. Geologic map of Cerro Castillo de Las Brujas area (Tucumán Province). C. Schematic profile of the sequence indicating the position of the fossiliferous level and the dated tuff.

f01_241.jpg

In terms of species, Megatheriinae were represented in Argentina during the Late Miocene—Pliocene by Pyramiodontherium bergi (Moreno and Mercerat, 1891) from the provinces of Catamarca and Tucumán; Pyramiodontherium brevirostrum Carlini, Brandoni, Scillato-Yané, and Pujos, 2002, from Catamarca Province; Pyramiodontherium scillatoyanei De Iuliis, Ré and Vizcaíno, 2004, from La Rioja Province; Plesiomegatherium hansmeyeri Roth, 1911, from Jujuy Province (but see Brandoni and De Iuliis 2007); Megatheriops rectidens (Rovereto, 1914) from Mendoza Province; Promegatherium smaltatum Ameghino, 1883, Pliomegatherium lelongi Kraglievich, 1926, Eomegatherium nanum (Burmeister, 1891) and Pyramiodontherium sp. (see Brandoni and Carlini 2009) from Entre Ríos Province; Megatheridium annectens Cabrera 1928 from Río Negro Province; and Anisodontherium halmyronomum (Cabrera, 1928) from Buenos Aires Province (Fig. 1A).

The fossil mammals from the Late Miocene—Pliocene beds of north-western Argentina have been intensely studied (see e.g., Moreno and Mercerat 1891; Rovereto 1914; Kraglievich 1934; Tauber 2005; Rodriguez Brizuela and Tauber 2006; Candela et al. 2007; Nasif et al. 2007). In the provinces of Catamarca and Tucumán, most of these fossils were found in the Andalhuala and Corral Quemado formations, which are among the most fossiliferous formations of the Late Miocene—Pliocene of Argentina (see Moreno and Mercerat 1891; Ameghino 1919; Riggs and Patterson 1939; Cabrera 1944; Castellanos 1946; Marshall and Patterson 1981). In the Province of Tucumán, fossil mammals have also been reported from the locality of Tiopunco (Ameghino 1919; Esteban and Abdala 1993), the Saladillo Formation (Powell and González 1997) and the India Muerta Formation (Babot and Ortiz 2008), with both Tiopunco (Ameghino 1919; Kraglievich 1934; Brandoni and Carlini 2009) and the Saladillo Formation (Powell and González 1997) having yielded remains of megatheriines.

The presence of a megatheriine from the Saladillo Formation is based on several remains, including a mandible, vertebrae and fragments of a radius and ulna, which, though mentioned by Powell and González (1997), have so far neither been described nor figured. Among this material, a nearly complete mandible stands out as preserving several taxonomically important features commonly used in megatheriine systematics. Here, we describe and compare these mandibular remains, as well as an associated digit III of the manus, and discuss their systematic, biogeographic and biochronological implications.

Institutional abbreviations.—CICYTTP-PV, Colección de Paleontología de Vertebrados, Centra de Investigaciones Científicas y Transferencia de Tecnología a la Producción, Diamante, Argentina; MACN Pv, Colección Paleontología Vertebrados del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina; MLP, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina; PVL, Paleontología Vertebrados Lillo, Facultad de Ciencias e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina.

Other abbreviations.—HI, Hypsodonty Index; Ma, millions of years ago; m1–m4, lower molariform 1–4; SALMA, South American Land Mammal Age.

Geological setting

The fossils were found in strata assigned to the Saladillo Formation (= Hiladas del Saladillo, Peirano 1946), exposed near the area of Cerro Castillo de Las Brujas, Tucumán Province (Fig. 1B). The Saladillo Formation, which represents the basal unit of the Subgroup Santa María (Neogene), is separated from the underlying Eocene Lumbrera Formation by a paraconformity (Vergani et al. 1991), and in several places in turn overlain by the Upper Miocene San José Formation. At Cerro Castillo de Las Brujas, the lowermost levels of the Saladillo Formation consist of fluvial deposits of pink, red, brown and occasionally gray sandstone (ranging from fine to coarse), siltstone, and, albeit rarely, claystone. Rounded pumice clasts indicating the beginning of important volcanic activity are present close to the bone-bearing level, with the latter being located 28.40 m above the base of the formation. The unit was locally dated based on a 30 cm thick tuff level located 3 m below the fossil remains (Fig. 1C), indicating a K/Ar age of 10±0.3 Ma (Late Miocene) (González et al. 2000).

Systematic paleontology

Xenarthra Cope, 1889
Tardigrada Latham and Davies in Forster, 1795
Megatheriidae Gray, 1821
Megatheriinae Gray, 1821
Genus Anisodontherium Brandoni and De Iuliis, 2007

  • Type species: Anisodontherium halmyronomum (Cabrera, 1928); Bank of the Arroyo Chasicó, near Chasicó Lagoon, Buenos Aires Province, Argentina, Arroyo Chasicó Formation (Upper Miocene).

  • Geographic and stratigraphic range.—Bank of the Arroyo Chasicó, near Chasicó Lagoon, Buenos Aires Province, Argentina (Fig. 1A), Arroyo Chasicó Formation (Upper Miocene). Cerro Castillo de Las Brujas, Tucumán Province, Argentina (Fig. 1A), Saladillo Formation (Upper Miocene) (Fig. 1A).

  • Anisodontherium sp.
    Figs. 2, 3A.

  • Referred material.—PVL 6425, a nearly complete mandible lacking both angular processes and the left articular condyle (Fig. 2A–C); and digit III of the manus (Fig. 2D). Cerro Castillo de Las Brujas (26° 38′ 07.26″S, 65° 50′ 53.04″W), Tucumán Province, Argentina, Saladillo Formation (Upper Miocene) (Fig. 1B).

  • Emended diagnosis (modified from Brandoni and De Iuliis 2007).—Low, elongated skull; palate flattened; lateral walls of rostrum rectilinear and parallel; short tooth row; anterior margin of coronoid process sigmoid; posterior margin of mandibular symphysis located anterior to ml and rounded; both dentaries well separated; posterolateral opening of mandibular canal located at the base of the coronoid process, nearly on the alveolar plane; anterolateral opening of mandibular canal located anterior to posterior margin of mandibular symphysis; m4 anterior to anterior margin of coronoid process; lower molariforms small and mesiodistally compressed (especially m2 and m3); molariforms with a markedly deep, V-shaped valley between the transverse crests, particularly on m1; hard dentine, especially that of the anterior wall of each molariform, not well developed; anterior transverse crest of molariforms without a well-developed wear facet.

  • Description.—In lateral view (Fig. 2A, B), the ventral margin of the dentary is generally convex, but ascends posterior to the base of the m4 alveolus, thus forming a notch between the level of the alveolus and the angular process. In this PVL 6425 closely resembles Anisodontherium halmyronomum (see Brandoni and De Iuliis 2007: fig. 3A) and Plesiomegatherium hansmeyeri (see Roth 1911: fig. 1), although the ventral bulge is more marked in those species.

    While the angular processes of PVL 6425 are incompletely preserved, their broken bases suggest a ventral position, as also seen in Anisodontherium halmyronomum (see Brandoni and De Iuliis 2007: fig. 3A), Megatheriops rectidens, Megathericulus patagonicus Ameghino, 1904 (see De Iuliis et al. 2008: fig. 2D), Eomegatherium andinum Kraglievich, 1930, Pliomegatherium lelongi (see Brandoni 2006: figs. 3.2, 4), Eremotherium laurillardi (Lund, 1842), and Megatherium tarijense Gervais and Ameghino, 1880 (see De Iuliis et al. 2009: fig. 2C); by contrast, the angular processes are more dorsally positioned in some species of Megatherium Cuvier, 1796, such as M. americanum and M. gallardoi Ameghino and Kraglievich, 1921 (see Brandoni et al. 2008: fig. 2C).

    The anterior margin of the coronoid process is sigmoid in lateral view (Fig. 2A, B), with the ventral part being concave and the dorsal part convex. The posterior margin of the coronoid process is concave. The highest point of the coronoid process is located 135 mm, and the articular condyle 100 mm above the alveolar plane. In Eremotherium Spillmann, 1948, the articular condyle is relatively low, whereas in Megatherium it occupies a more dorsal position (De Iuliis and Cartelle 1999).

    In PVL 6425, m4 lies anterior to the anterior margin of the coronoid process and is entirely visible in lateral view (Fig. 2B), as is the case in Anisodontherium halmyronomum (see Brandoni and De Iuliis 2007: fig. 3A) and probably also Megathericulus patagonicus (see De Iuliis et al. 2008: fig. 2C, D) and Eomegatherium andinum. In other megatheriines, m4 is located more posteriorly with respect to the coronoid process, although there is some variation in its exact position: in Pliomegatherium lelongi, the distal margin of m4 nearly coincides with the plane of the anterior margin of the coronoid process (Brandoni 2006: figs. 3.1–4); by contrast, in Eremotherium eomigrans De Iuliis and Cartelle, 1999 (see De Iuliis and Cartelle 1999: fig. 4B), Plesiomegatherium hansmeyeri, Megatheriops rectidens, Pyramiodontherium bergi, and Pyramiodontherium brevirostrum (see Carlini et al. 2002: fig. 2), only the mesial half of m4 is visible in lateral view; finally, m4 is located entirely posterior to the anterior margin of the coronoid process and hidden from lateral view in several specimens of Megatherium americanum.

    The posterolateral opening of the mandibular canal lies at the base of the coronoid process, almost reaching the alveolar plane (Fig. 2A, B). In Anisodontherium halmyronomum, the position of this opening is not observable owing to the poor state of preservation of this part of the dentary. The condition in Megathericulus patagonicus resembles that of PVL 6425, whereas in other megatheriines, such as Pliomegatherium, Megatheriops, Pyramiodontherium, Megatherium, and Eremotherium, the foramen is located dorsally, medial to the base of the coronoid process, and usually opposite m4. As in Pyramiodontherium and Megatheriops, the anterolateral opening of the mandibular canal is situated anterior to the posterior margin of the mandibular symphysis.

    In occlusal view (Fig. 2C), the posterior margin of the mandibular symphysis is located ventromedial and anterior to the level of m1, as in Anisodontherium halmyronomum (see Brandoni and De Iuliis 2007: fig. 3B), Megathericulus patagonicus (see De Iuliis et al. 2008: fig. 2C), Eomegatherium andinum, and E. nanum (see Kraglievich 1930: fig. 5A). The position of the posterior margin of the mandibular symphysis in other megatheriines varies: in Pyramiodontherium bergi and Eremotherium laurillardi, it reaches approximately to a point halfway along m1. It is even farther posterior, reaching the plane of the alveolar septum between m1 and m2, in Plesiomegatherium hansmeyeri (see Roth 1911: fig. 1), Pyramiodontherium brevirostrum (see Carlini et al. 2002: fig. 2), Megatherium altiplanicum Saint-André and De Iuliis, 2001 (see Saint-André and De Iuliis 2001: fig. 4B), and M. tarijense (see De Iuliis et al. 2009: fig. 2D). Finally, the posterior margin of the mandibular symphysis generally reaches to a point halfway along the m2 in M. americanum and M. gallardoi (see Brandoni et al. 2008: fig. 2D), although in M. americanum it occasionally also lies at the level of the m1/m2 alveolar septum. In PVL 6425, the posterior margin of the symphysis is rounded and the dentaries are well separated. By contrast, the dentaries approach each other more closely at the level of the symphysis and form a nearly V-shaped outline in dorsal view in Megatherium altiplanicum, M. gallardoi, M. tarijense, and most specimens of M. americanum. In Anisodontherium sp., the articular condyle is nearly oval in outline, while being subcircular in M. tarijense (see De Iuliis et al. 2009: fig. 2D).

    The most notable feature of the dentition of PVL 6425, and especially m2 and m3, is the mesiodistally compressed, rather than isodiametric (length and width being almost equal) shape of the molariforms (Figs. 2C, 3A; Table 1). This mesiodistal compression also occurs in Anisodontherium halmyronomum (see Brandoni and De Iuliis 2007: fig. 3B, D), Megathericulus patagonicus and Eomegatherium andinum (note that no teeth have so far been described for the latter two species; however, their form can be inferred from their alveoli). By contrast, in Pyramiodontherium, Megatheridium, Megatheriops, Pliomegatherium, Megatherium, Eremotherium, and Plesiomegatherium hansmeyeri the molariforms are isodiametric, albeit differently shaped. In occlusal view, megatheriine molariforms have two crests of hard dentine separated by a deep valley excavated in the soft dentine (Fig. 3). Unlike Pyramiodontherium and Megatherium (Fig. 3B and 3C, respectively), Anisodontherium sp. lacks well-developed hard dentine, especially along the anterior wall of the molariforms, as well as wear facets on the anterior transverse crests (Fig. 3A).

    In PVL 6425, ml has a nearly trapezoidal outline in occlusal view, whereas m2 and m3 are clearly rectangular, and the margins of m4 (the smallest) are flat anteriorly and convex posteriorly. In Anisodontherium halmyronomum the shape of the molariforms is similar to those of PVL 6425, whereas in Pyramiodontherium bergi the anterior and posterior crests of m1 and m2 are oriented obliquely with respect the anteroposterior axis, giving those teeth a more trapezoidal outline (Fig. 3B). By contrast, all of the molariforms of Megatherium and Eremotherium are nearly squared (Fig. 3C). In addition, the molariforms, and particularly m1, of Anisodontherium sp. and A. halmyronomum possess a deep V-shaped valley between the transverse crests (Fig. 2A, B). While present, this valley is generally shallower in other taxa, such as Pyramiodontherium, Megatheriops, and Megatherium.

    In taxa showing mesiodistal compression of the molariforms, the molariform tooth row is relatively shorter than in megatheriines with isodiametric cheek teeth. This has implications for the Hypsodonty Index (HI), calculated as the greatest height of the mandibular ramus/length of the molariform tooth row × 100, which has been used as an indicator of hypsodonty of the molariforms in sloths (see Zetti 1964; Bargo et al. 2006; Brandoni and De Iuliis 2007; Fields 2009). For PVL 6425, the HI is nearly 99 (taking into account an average of the measurements of both dentaries), compared to a value of 103–107 in Anisodontherium halmyronomum. In other Tertiary megatheriines from Argentina, the HI ranges from 75–113 (Table 2), whereas among Quaternary megatheriines the HI is greatest in Megatherium americanum, in which it varies between 92 and 112 (Saint-André and De Iuliis 2001). However, as was noted by De Iuliis et al. (2004) and Brandoni and De Iuliis (2007), HI values for Anisodontherium and M. americanum are not directly comparable (see below).

    Digit III is composed of a proximal phalanx (fusion of phalanges 1+2) and a strong, claw-shaped ungual phalanx (Fig. 2D). The proximal surface of the phalanx (1+2) bears a wide facet for Mc III, which is elongated along the dorsolateral-ventromedial axis. The well-developed and relatively short and robust ungual phalanx is higher than wide, particularly in its distal portion, and oriented obliquely to the sagittal plane. It articulates with the proximal phalanx (1+2) along a deeply depressed surface, which is divided into two oval parts.

  • Fig. 2.

    Megatheriine Anisodontherium sp. (PVL 6425), Cerro Castillo de Las Brujas, Tucumán Province, Argentina. Saladillo Formation (Upper Miocene). AC. Mandible in left lateral (A), right lateral (B), and occlusal (C) views. D. Digit III of the manus in lateral view.

    f02_241.jpg

    Table 1.

    Measurements (in mm) of the molariforms of Anisodontherium sp. (PVL 6425).

    t01_241.gif

    Fig. 3.

    Lower molariforms of megatheriines in occlusal view. A. Anisodontherium sp. (PVL 6425), Cerro Castillo de Las Brujas, Tucumán Province, Argentina. Saladillo Formation (Upper Miocene). B. Pyramiodontherium Rovereto, 1914 (MLP 31-XI-12-25), Bajo de Andalhuala, Catamarca Province, Andalhuala Formation (Upper Miocene). C. Megatherium Cuvier, 1796 (CICYTTP-PV-M-2-356), Entre Ríos Province, Tezanos Pinto Formation (Upper Pleistocene). Explanatory drawings (A1–C1), photographs (A2–C2).

    f03_241.jpg

    Table 2.

    Measurements (in mm) of the mandibles of Tertiary megatheriines from Argentina. Abbreviations: MTRL, molariform tooth row length; HMR, height of the mandibular ramus; HI, Hypsodonty Index.

    t02_241.gif

    Discussion

    Powell and González (1997) mentioned the presence of a megatheriine and a mesotheriine (Mammalia, Notoungulata) from the Saladillo Formation, with the megatheriine being represented by a mandible, vertebrae, and fragments of a radius and ulna. In addition, a digit and a scapula were also part of the recovered specimen. However, only the mandible and the digit show features consistent with the morphology of Megatheriinae, whereas the other bones cannot clearly be assigned to this group of ground sloths (DB personal observation). Thus, for the moment, we have chosen to restrict our description to the former two elements.

    Plesiomegatheriumhalmyronomum was described by Cabrera (1928) based on a skull recovered from the Arroyo Chasicó Formation (specimen MLP 26-IV-10-1), in southwestern Buenos Aires Province, Argentina. Later, Cattoi (1966) referred a mandible (MLP 30-XII-10-21) from the same formation to this species. More recently, Brandoni and De Iuliis (2007) considered P. hansmeyeri (the type species of Plesiomegatherium) from Jujuy Province and “P.” halmyronomum to be sufficiently different to warrant the erection of the new genus Anisodontherium for the megatheriine originally described by Cabrera (1928).

    PVL 6425 resembles the mandible of Anisodontherium halmyronomum (MLP 30-XII-10-21) in the shape of the molariforms (mesiodistally compressed), the position of the anterior margin of the coronoid process (posterior with respect to m4), and the position of the posterior margin of the symphysis (anterior with respect to m1), thus justifying its referral to this genus. However, PVL 6425 is smaller and more slender than A. halmyronomum, and further differs from the latter in the convexity of the ventral margin of the dentary (ventral bulge less pronounced). These differences might signal the existence of a new species of Anisodontherium in the Late Miocene of Tucumán Province. However, given the broad range of individual variation observed in other Megatheriinae (e.g., Pliomegatherium, Megatherium, Eremotherium), as well as the incompleteness of PVL 6425, we prefer to describe the latter as Anisodontherium sp. New discoveries of more complete and better preserved material resembling PVL 6425 will be necessary before a new species can be reliably diagnosed.

    During the course of their evolution, the body size of megatherines and, as a result, the size of their molariforms generally increased. However, in the molariforms this process did not occur evenly, with the relative increase in the anteroposterior length of these teeth generally exceeding that in their labiolingual width (Kraglievich 1930). Thus, while the molariforms of earlier megatheriines are usually rectangular in occlusal view, those of Quaternary megatheriines are nearly squared (isodiametric). This increase in the anteroposterior length of the molariforms necessarily led to a relative increase in the length of the molariform tooth row, which in turn resulted in Quaternary megatheriines (e.g., Megatherium, Eremotherium) generally possessing a relatively longer tooth row than taxa from the Middle and Late Miocene (e.g., Megathericulus, Anisodontherium).

    At least three features commonly used in megatheriine systematics and paleobiological analyses are closely related to the length of the molariform tooth row: the Hypsodonty Index, the position of the anterior margin of the coronoid process, and the position of the posterior margin of the mandibular symphysis.

    The Hypsodonty Index has been used in megatheriine systematics and cladistics (see Saint-André and De Iuliis 2001; Pujos 2006; Brandoni and De Iuliis 2007; Brandoni et al. 2008), as well as paleobiological studies of ground sloths (see Bargo et al. 2006; Fields 2009). In particular, it is one of the characters proposed to separate Megatherium from Eremotherium (see Saint-André and De Iuliis 2001), as well as M. americanum from M. gallardoi (see Brandoni et al. 2008). In addition, the differences between the HI of Megatherium americanum and Eremotherium laurillardi have been related to paleoenvironmental aspects, with M. americanum (high HI) linked to open grassland, and Eremotherium laurillardi (low HI) to closed forest habitats (Bargo et al. 2006). However, unlike in those previous studies, the HI values for Anisodontherium cannot be directly compared to those of most megatheriine genera, such as Megatherium, since the relatively shorter molariform tooth row in Anisodontherium exaggerates its hypsodonty. In addition, with just two specimens of Anisodontherium described, the available sample is too small, and there is insufficient paleoenvironmental information for the Arroyo Chasicó and Saladillo formations to speculate whether the HI may reflect paleoenvironmental conditions.

    As noted above, in Anisodontherium the anterior edge of m1 is posterior to the posterior margin of the symphysis, and the posterior edge of m4 is anterior to the anterior margin of the coronoid process. Thus, the molariform tooth row lies entirely between the posterior margin of the mandibular symphysis and the anterior margin of the coronoid process, as is also the case in Megathericulus and Eomegatherium andinum from the Colloncuran—Mayoan of Argentina. By contrast, the molariform tooth row extends beyond those mandibular features in Megatherium americanum and Eremotherium laurillardi, owing to the presence of squared molariforms. The position of the posterior margin of the mandibular symphysis and the anterior margin of the coronoid process relative to the tooth row has been used in cladistic analyses of Megatheriinae (Pujos 2006). However, given that these characters seem closely related to the length of the molariform tooth row, and thus the shape of the molariforms, it seems likely that the latter might have an influence on the way these features are scored and interpreted in cladistic and paleobiological analyses.

    Thus far only three valid megatheriine species, all assigned to a single genus, have been described from the Late Miocene—Pliocene of north-western Argentina, including Pyramiodontherium bergi and P. brevirostrum, both of which were recovered from Bajo de Andalhuala in the Valle de Santa María, south of Chiquimil (Catamarca Province) (see Cabrera 1928; Carlini et al. 2002), as well as P. scillatoyanei from the Upper Miocene—Lower Pliocene lower member of the Toro Negro Formation of La Rioja Province (De Iuliis et al. 2004). In addition, Ameghino (1919) and Kraglievich (1931, 1934) mentioned the presence of a megatheriine based on cranial remains recovered from Tiopunco (Tucumán Province), which were referred to Pyramiodontherium by Kraglievich (1931) and Brandoni and Carlini (2009). The presence of Anisodontherium in Tucumán Province therefore increases both the species and genus diversity of megatheriines in the Late Miocene of north-western Argentina.

    While previous workers suggested an Eocene (Bossi and Palma 1982) or Paleocene—Early Miocene (Bossi and Muruaga 2009) age of the Saladillo Formation, these estimates were mainly based on stratigraphic interpretations, and are not supported by radiometric dating or fossil evidence. The tuff level dated by González et al. (2000) is located just 3 m below the fossiliferous level which yielded the megatheriine. At 10 ± 0.3 Ma, the age estimate for this layer is consistent with an another estimate of 10.7± 1.7 Ma for the age of a second tuff layer exposed at Campo del Arenal, 42 km west of Cerro Castillo de Las Brujas (Grier and Dallmeyer 1990). Together, these results strongly indicate a Late Miocene age for the lowermost levels of the Saladillo Formation.

    In addition to the record from the Saladillo Formation, Anisodontherium has been recovered from the Arroyo Chasicó Formation (Buenos Aires Province), traditionally divided into the basal Vivero Member and the overlying Las Barrancas Member (Bondesio et al. 1980). This subdivision was based on lithological features and paleontological evidence, and was followed by several authors who studied fossil vertebrates from the Chasicó Lagoon area (Bondesio et al. 1980; Deschamps et al. 2007, 2009; Verzi et al. 2008, among others). However, Zárate et al. (2007) suggested that the lithofacies identified in the Arroyo Chasicó Formation may not support its differentiation into two members. While the precise provenance of the holotype of A. halmyronomum is unknown, Cattoi (1966) indicated that the mandible MLP 30-XII-10-21 was recovered from the Vivero Member.

    While the fauna recovered from the Arroyo Chasicó Formation was originally interpreted to represent the early Late Miocene Chasicoan SALMA (Bondesio et al. 1980; Deschamps et al. 2007), more recent studies suggested that at least part of the faunal assemblage should be assigned to the Late Chasicoan or possibly Early Huayquerian SALMA, indicating a Late Miocene age (Verzi et al. 2008). Zárate et al. (2007) interpreted lithofacies 1 at the base of the formation as the result of a period of sedimentation occurring around 9.23 Ma. However, since the lower boundary of the formation is not exposed, the beginning of sedimentation probably exceeds 10 Ma (Schultz et al. 2004; Zárate et al. 2007). Thus, the presence of Anisodotherium in the lowermost levels of both the Saladillo and the Arroyo Chasicó formations seems to confirm the radiometric age estimates. Nevertheless, the correlation of the two units remains to be corroborated by new discoveries of better preserved specimens and additional radiometric data.

    In summary, the specimen described here increases our knowledge of the mandibular anatomy of early megatheriines and represents the first record of Anisodontherium outside the Pampean region, Argentina. In addition, the presence of Anisodotherium in Tucumán Province increases the diversity of Megatheriinae in the Late Miocene—Pliocene of north-western Argentina.

    Acknowledgements

    We thank Juan Manuel Ballesteros (Fundación Miguel Lillo, Tucumán, Argentina) for the preparation of the specimen, and many colleagues and students who helped with the field work. Alberto Gutierrez (Fundación Miguel Lillo) prepared the illustrations. Gerardo De Iuliis (University of Toronto, Canada), H. Gregory McDonald (Park Museum Management Program, National Park Service, Fort Collins, USA), Felix Marx (University of Otago, Dunedin, New Zealand), and one anonymous reviewer provided helpful comments and suggestions. This paper is a contribution to the following projects: PICT 2007-392, PICT 2006-381, PIP 886, PIP 5225, and CIUNT 26/G436. Universidad Nacional de Tucumán and SEGEMAR also supported the field work and research.

    References

    1.

    C. Ameghino 1919. Sobre los mamíferos fósiles del piso Araucanense de Catamarca y Tucumán. Actas de la Primera Reunión Nacional de la Sociedad Argentina de Ciencias Naturales (Tucumán, 1916)2: 150–153. Google Scholar

    2.

    C. Ameghino and L. Kraglievich 1921. Descripción del “Megatherium gallardoi” C. Amegh. descubierto en el Pampeano inferior de la ciudad de Buenos Aires. Anales del Museo Nacional de Historia Natural de Buenos Aires 31: 134–156. Google Scholar

    3.

    F. Ameghino 1883. Sobre una nueva colección de mamíferos recogidos por el Profesor Pedro Scalabrini en las barrancas del Paran´. Boletín de la Academia Nacional de Ciencias de Córdoba 5: 257–306. Google Scholar

    4.

    F. Ameghino 1904. Nuevas especies de mamíferos cretáceos y terciarios de la República Argentina. Anales de la Sociedad Científica Argentina 58: 225–291. Google Scholar

    5.

    M.J. Babot and P.E. Ortiz 2008. Primer registre de Borhyaenoidea (Mammalia, Metatheria, Sparassodonta) en la provincia de Tucumán (Formación India Muerta, Grupo Choromoro; Mioceno tardío). Acta Geológica Lilloana 21: 3–15. Google Scholar

    6.

    M.S. Bargo , G. De Iuliis , and S.F. Vizcaíno 2006. Hypsodonty in Pleistocene ground sloths. Acta Paleontologica Polonica 51: 53–61. Google Scholar

    7.

    P. Bondesio , J.H. Laza , G.J. Scillato-Yané , E.P. Tonni , and M.G. Vucetich 1980. Estado actual del conocimiento de los vertebrados de la Formación Arroyo Chasicó (Plioceno temprano) de la provincia de Buenos Aires. 2° Congreso Argentino de Paleontología y Bioestratigrafíay 1° Congreso Latinoamericano de Paleontología, Buenos Aires, Argentina, Actas 3: 101–127. Google Scholar

    8.

    G.E. Bossi and R.M. Palma 1982. Reconsideración de la estratigrafía del Valle de Santa María, provincia de Catamarca, Argentina. 5° Congreso Latinoamericano de Geología, Buenos Aires, Argentina, Actas 1: 155–172. Google Scholar

    9.

    G.E. Bossi and C. Muruaga 2009. Estratigrafía e inversión tectónica del “rift” neógeno en el Campo del Arenal, Catamarca, NO Argentina. Andean Geology 36: 311–341. Google Scholar

    10.

    D. Brandoni 2006. A review of Pliomegatherium Kraglievich, 1930 (Xenarthra: Phyllophaga: Megatheriidae). Neues Jahrbuch für Geologie und Paläontologie-Monatshefte 2006 (4): 212–224. Google Scholar

    11.

    D. Brandoni and A.A. Carlini 2009. On the presence of Pyramiodontherium (Mammalia, Tardigrada, Megatheriidae) in the “Conglomerado osífero” (late Miocene) of Argentina and its biogeographical implications. Rivista Italiana di Paleontologia e Stratigrafia 115: 111–123. Google Scholar

    12.

    D. Brandoni and G. De Iuliis 2007. A new genus for the Megatheriinae (Xenarthra, Phyllophaga, Megatheriidae) from the Arroyo Chasicó Formation (Upper Miocene) of Buenos Aires Province, Argentina. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 244 (1): 53–64. Google Scholar

    13.

    D. Brandoni and G.J. Scillato-Yané 2007. Los Megatheriinae (Xenarthra, Tardigrada) del Terciario de Entre Róos, Argentina: aspectos taxonómicos y sistemáticos. Ameghiniana 44: 427–434. Google Scholar

    14.

    D. Brandoni , E. Soibelzon , and A. Scarano 2008. On Megatherium gallardoi (Xenarthra, Megatheriidae) and the Megatheriinae from the Ensenadan (lower to middle Pleistocene) of the Pampean region, Argentina. Geodiversitas 30: 793–804. Google Scholar

    15.

    D. Brandoni , B.S. Ferrera , and E. Brunetto 2010. Mylodon darwini Owen (Xenarthra, Mylodontinae) from the Late Pleistocene of Mesopotamia, Argentina. Remarks on individual variability, paleobiology, paleobiogeography, and paleoenvironment. Journal of Vertebrate Paleontology 30:1547–1558. Google Scholar

    16.

    H. Burmeister 1891. Continuación a las adiciones al examen crítico de los mamíferos terciarios. Anales del Museo Nacional de Buenos Aires 3: 401–461. Google Scholar

    17.

    A. Cabrera 1928. Sobre algunos megaterios pliocenos. Revista del Museo La Plata 31: 339–352. Google Scholar

    18.

    A. Cabrera 1944. Los gliptodontes del Araucaniano de Catamarca. Revista del Museo de La Plata (nueva serie) sección Paleontología 3: 5–76. Google Scholar

    19.

    A. M. Candela , J.I. Noriega , and M. Reguero 2007. The first Pliocene mammals from the northeast (Mesopotamia) of Argentina: its biostratigraphic and paleoenvironmental significance. Journal of Vertebrate Paleontology 27: 476–483. Google Scholar

    20.

    A.A. Carlini , D. Brandoni , G.J. Scillato-Yané , and F. Pujos 2002. Una nueva especie de megaterino (Xenarthra, Megatheriidae) del Mioceno Tardío—Plioceno de Catamarca, Argentina. Ameghiniana 39: 367–377. Google Scholar

    21.

    A. Castellanos 1946. Un nuevo gliptodontoideo del Araucanense del valle de Yocavil (Santa María) de la Provincia de Tucumán. Publicaciones del Instituto de Fisiografía y Geología 6: 1–19. Google Scholar

    22.

    N.V. Cattoi 1966. Edentata. In : A.V. Borrello (ed.), Paleontografía Bonaerense , 59–100. Comisión de Investigaciones Científicas de La Provincia de Buenos Aires, La Plata, Argentina. Google Scholar

    23.

    E.D. Cope 1889. The Edentata of North America. American Naturalist 23: 657–664. Google Scholar

    24.

    G. Cuvier 1796. Notice sur le squelette d'une très-grande espèce de quadrupède inconue jusqu'à présent trouvé au Paraguay, et déposé au cabinet d'histoire naturelle de Madrid. Magasin Encyclopédique: ou Journal des Sciences, des Lettres et des Arts 1: 303–310; 2: 227–228. Google Scholar

    25.

    M.C. Deschamps , A.I. Olivares , E.C. Vieytes , and M.G. Vucetich 2007. Ontogeny and diversity of the oldest capybaras (Rodentia: Hydrochoeridae; Late Miocene of Argentina). Journal of Vertebrate Paleontology 27: 683–692. Google Scholar

    26.

    M.C. Deschamps , E.C. Vieytes , A.I. Olivares , and M.G. Vucetich 2009. Primer registre de Cardiatherium chasicoense (Rodentia, Hydrochoeridae) en el área extrapampeana (San Juan, Argentina): análisis morfométricos de los molares. Ameghiniana 46: 295–305. Google Scholar

    27.

    G. De Iuliis and C. Cartelle 1999. A new giant megatheriine ground sloth (Mammalia: Xenarthra: Megatheriidae) from the late Blancan to early Irvingtonian of Florida. Zoological Journal of the Linnean Society 127: 494–515. Google Scholar

    28.

    G. De Iuliis , G.H. Ré , and S.F. Vizcaíno 2004. The Tore Negro megatheriine (Mammalia, Xenarthra): a new species of Pyramiodontherium and a review of Plesiomegatherium. Journal of Vertebrate Paleontology 24: 214–227. Google Scholar

    29.

    G. De Iuliis , D. Brandoni , and G.J. Scillato-Yané 2008. New remains of Megathericulus patagonicus Ameghino, 1904 (Xenarthra, Megatheriidae): information on primitive features of megatheriines. Journal of Vertebrate Paleontology 28 (1): 181–196. Google Scholar

    30.

    G. De Iuliis , F. Pujos , and G. Tito 2009. Systematic and taxonomic revision of the Pleistocene ground sloth Megatherium (Pseudomegatherium) tarijense (Xenarthra: Megatheriidae). Journal of Vertebrate Paleontology 29: 1244–1251. Google Scholar

    31.

    F. Delsuc , F.M. Catzeflis , M.J. Stanhope , and E.J.P. Douzery 2001. The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: Implications for the status of the enigmatic fossil Eurotamandua. Proceedings of the Royal Society of London, series B 268: 1605–1615. Google Scholar

    32.

    F. Delsuc , M. Scally , O. Madsen , M.J. Stanhope , W.W. de Jong , F.M. Catzeflis , M.S. Springer , and E.J.P. Douzery 2002. Molecular phylogeny of living xenarthrans and the impact of character and taxon sampling on the placental tree rooting. Molecular Biology and Evolution 19: 1656–1671. Google Scholar

    33.

    F. Delsuc and E.J.P. Douzery 2008. Recent advances and future prospects in xenarthran molecular phylogenetics. In : S. Vizcaíno and W. Loughry (eds.), The Biology of the Xenarthra , 11–13. University Press of Florida, Gainesville/Tallahassee. Google Scholar

    34.

    G. Esteban and F. Abdala 1993. Nuevos restas de Glossotheriopsis (Edentata, Tardigrada) de Tío Punco (Provincia de Tucumán). Análisis filogenético preliminar. Ameghiniana 30: 328–329. Google Scholar

    35.

    E.F. Fields 2009. Hypsodonty in the Pleistocene ground sloth Megalonyx: Closing the “diastema” of data. Acta Palaeontologica Polonica 54: 155–158. Google Scholar

    36.

    T.J. Gaudin 2004. Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zoological Journal of the Linnean Society 140: 255–305. Google Scholar

    37.

    H. Gervais and F. Ameghino 1880. Los mamíferos fósiles de la América del Sud. 225 pp. F. Savi-Ignon Hermanos, Paris. Google Scholar

    38.

    O.E. González , M.E. Viruel , R. Mon , and P. Tchilinguirian 2000. Hoja Geológica 2766- II San Miguel de Tucumán. Servicio Geológico Minero Argentine, Boletín 245: 1–124. Google Scholar

    39.

    J.E. Gray 1821. On the natural arrangement of vertebrose animals. London Medical Repository 5: 296–310. Google Scholar

    40.

    M. Grier and R.D. Dallmeyer 1990. Age of the Payogastilla Group: Implications for foreland basin development, NW Argentina. Journal of South American Earth Sciences 3: 269–278. Google Scholar

    41.

    L. Kraglievich 1926. Notas sobre gravigrados de Sud América. Anales del Museo Nacional de Historia Natural de Buenos Aires 34: 21–36. Google Scholar

    42.

    L. Kraglievich 1930. La formación friaseana del Río Frías, Río Fénix, Laguna Bianca, etc. Y su fauna de mamíferos. Physis, Revista de la Sociedad Argentina de Ciencias Naturales 10: 127–161. Google Scholar

    43.

    L. Kraglievich 1931. Megatherium Lundi Seijoi, nueva subespecie pleistocena de Uruguay. Revista de la Sociedad Amigos de la Arqueología 5: 81–89. Google Scholar

    44.

    L. Kraglievich 1934. La antigüedad Pliocena de las faunas de Monte Hermoso y Chapadmalal deducida de su comparación con las que le precedieron y le sucedieron. 136 pp. Imprenta “El Siglo Ilustrado”, Montevideo. Google Scholar

    45.

    J. Latham and H. Davies 1795. Faunula indica. In : J.R. Forster (ed.), Zoologia indica. Ed. secunda, appendix, 38 pp. J.J. Gebauer, Halle. Google Scholar

    46.

    P.W. Lund 1842. Blik paa Brasiliens Dyreverden for Sidste Jordomvaeltning. Fjerde Afhandling: Fortsaettelse af Pattedyrene. Detkongelige Danske Videnscabernes Selskabs Skrifter; Naturvidenskabelige og Mathematisk Afhandlinger 9: 137–208. Google Scholar

    47.

    O. Madsen , M. Scally , C.J. Douady , D.J. Kao , R.W. De Bry , R. Adkins , H.M. Amrine , M.J. Stanhope , W.W. de Jong , and M.S. Springer 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614. Google Scholar

    48.

    L.G. Marshall and B. Patterson 1981. Geology and geochronology of the mammal-bearing Tertiary of the valle de Santa María and río Corral Quemado, Catamarca province, Argentina. Fieldiana Geology 9: 1–80. Google Scholar

    49.

    H.G. McDonald 2003. Xenarthran skeletal anatomy: primitive or derived? In : R.A. Fariña , S.F. Vizcaíno , and G. Storch (eds.), Morphological studies in fossil and extant Xenarthra (Mammalia). Senckenbergiana biologica 83: 1–13. Google Scholar

    50.

    H.G. McDonald and G. De Iuliis 2008. Fossil history of sloths. In : S. Vizcaíno and W. Loughry (eds.), The Biology of the Xenarthra , 39–55. University Press of Florida, Gainesville/Tallahassee. Google Scholar

    51.

    M. Moller-Krull , F. Delsuc , G. Churakov , C. Marker , M. Superina , J. Brosius , E.J. Douzery , and J. Schmitz 2007. Retroposed elements and their flanking regions resolve the evolutionary history of xenarthran mammals (armadillos, anteaters, and sloths). Molecular Biology and Evolution 24: 2573–2582. Google Scholar

    52.

    F.P. Moreno and A. Mercerat 1891. Exploración arqueológica de la Provincia de Catamarca: Paleontología. Revista del Museo de La Plata 1: 222–236. Google Scholar

    53.

    W.J. Murphy , E. Eizirick , W.E. Jonhson , Y.P. Zhang , O.A. Ryder , and S.J. O' Brien 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618. Google Scholar

    54.

    N. Nasif , G. Esteban , and S. Georgieff 2007. Nuevo registro de vertebrados para la formación Aconquija, provincia de Catamarca, Noroeste de Argentina, implicancia cronoestratigáficas y consideraciones paleoambientales. Acta Geológica Lilloana 20: 99–112. Google Scholar

    55.

    A. Peirano 1946. Estudio geológico de la quebrada de Amaicha, Departamento de Tafí, provincia de Tucumán. Con referencias preliminares al valle de Santa María (parte tucumana). Cuadernos de Minería y Geología (Publicación N° 400) IV-C.4 (16): 6–37. Google Scholar

    56.

    J.E. Powell and O.E. González 1997. Hallazgo de mamíferos en la Formación Saladillo (Grupo Santa María), proximo al río Amaicha, provincia de Tucumán. Implicancias cronológicas. Ameghiniana 34: 124. Google Scholar

    57.

    A.B. Prasad , M.W. Allard , NISC Comparative Sequencing Program , and E.D. Green 2008. Confirming the phylogeny of mammals by use of large comparative sequence data sets. Molecular Biology and Evolution 25: 1795–1808. Google Scholar

    58.

    F. Pujos 2006. Megatherium celendinense sp. nov. from the Pleistocene of Peruvian Andes and the megatheriine phylogenetic relationship. Palaeontology 49: 285–306. Google Scholar

    59.

    E.S. Riggs and B. Patterson 1939. Stratigraphy of Late Miocene and Pliocene deposits of the Province of Catamarca (Argentina) with notes on the faunae. Physis 14: 143–162. Google Scholar

    60.

    R. Rodríguez Brizuela and A. Tauber 2006. Estratigrafía y mamíferos fósiles de la Formación Tora Negro (neógeno), Departamento Vinchina, noreste de la provincia de La Rioja. Ameghiniana 43: 257–272. Google Scholar

    61.

    S. Roth 1911. Un nuevo género de la familia Megatheridae. Revista del Museo de La Plata 18: 7–21. Google Scholar

    62.

    C. Rovereto 1914. Los estratos araucanos y sus fósiles. Anales del Museo Nacional de Historia Natural de Buenos Aires 25: 1–247. Google Scholar

    63.

    P.-A. Saint-André and G. De Iuliis 2001. The smallest and most ancient representative of the genus Megatherium Cuvier, 1796 (Xenarthra, Tardigrada, Megatheriidae), from the Pliocene of the Bolivian Altiplano. Geodiversitas 23: 625–645. Google Scholar

    64.

    P.H. Schultz , M. Zárate , B. Hames , C. Koeberl , T. Bunch , D. Storzer , P. Renne , and J. Wittke 2004. The Quaternary impact record from the Pampas, Argentina. Earth and Planetary Science 219: 221–228. Google Scholar

    65.

    F. Spillmann 1948. Beitrge zur Kenntnis eines neuen gravigraden Riesensteppentieres (Eremotherium carolinenese gen. et. spec. nov.), seines Lebensraumes und seiner Lebensweise. Palaeobiologica 8: 231–279. Google Scholar

    66.

    A.A. Tauber 2005. Mamíferos fósiles y edad de la Formación Salicas (Mioceno tardío) de la sierra de Velasco, La Rioja, Argentina. Ameghiniana 42: 443–460. Google Scholar

    67.

    G.O. Vergani , O. Decastelli , A. Moroni , and A. Chaia 1991. Análisis estratigráfico y oleogenético del Mioceno del valle de Santa María, provincias de Salta, Tucumán, y Catamarca (unpublished). 48 pp. Yacimientos Petrolíferos Fiscales (YPF S.A.), Buenos Aires. Google Scholar

    68.

    D.H. Verzi , C.I. Montalvo , and C.M. Deschamps 2008. Biostratigraphy and biochronology of the Late Miocene of central Argentina: evidence from rodents and taphonomy. Geobios 41: 145–155. Google Scholar

    69.

    S.F. Vizcaíno 2009. The teeth of the “toothless”: novelties and key innovations in the evolution of xenarthrans (Mammalia, Xenarthra). Paleobiology 35: 343–366. Google Scholar

    70.

    M.A. Zárate , P.H. Schultz , A. Blasi , C. Heil , J. King , and W. Hames 2007. Geology and geochronology of the type Chasicoan (late Miocene) mammal-bearing deposits of Buenos Aires Province (Argentina). Journal of South American Earth Sciences 23: 81–90. Google Scholar

    71.

    J. Zetti 1964. El hallazgo de un Megatheriidae en el “médano Invasor” del SW de Toay, provincia de La Pampa. Ameghiniana 3: 257–265. Google Scholar
    Diego Brandoni, Jaime E. Powell, and Osvaldo E. González "Anisodontherium from the Late Miocene of North-Western Argentina," Acta Palaeontologica Polonica 57(2), 241-249, (20 May 2011). https://doi.org/10.4202/app.2010.0129
    Received: 23 December 2010; Accepted: 1 May 2011; Published: 20 May 2011
    KEYWORDS
    Anisodontherium
    Argentina
    diversity
    ground sloths
    Megatheriinae
    upper Miocene
    Xenarthra
    Back to Top