On two cases of male dimorphism in dwarf spiders (Araneae: Linyphiidae)

Authors: Robert Bosmans, and Pierre Oger
Source: Arachnologische Mitteilungen: Arachnology Letters, 55(1) : 52-56
Published By: Arachnologische Gesellschaft e.V.
URL: https://doi.org/10.30963/aramit5509
On two cases of male dimorphism in dwarf spiders (Araneae: Linyphiidae)

Robert Bosmans & Pierre Oger

Abstract. *Diplocephalus cristatus* (Blackwall, 1833) is confirmed as a dimorphic species, having two morphs: *cristatus* and *foraminifer*. This view was first proposed by Georgescu (1969), but not supported in the literature. *Diplocephalus foraminifer* (O. Pickard-Cambridge, 1875), *D. bicephalus* (Simon, 1884), *D. rectilobus* (Simon, 1884), *D. foraminifer thyrsiger* (Simon, 1884) and *D. arvernus* (Denis, 1948) are here considered junior synonyms of *D. cristatus* (Blackwall, 1833). *Diplocephalus bicephalus* belongs to the morph *cristatus*, *D. rectilobus*, *D. thyrsiger* and *D. arvernus* to the morph *foraminifer*. A lectotype (♀) is designated for *Diplocephalus bicephalus* Simon, 1884; the paratype female of *D. bicephalus* was incorrectly identified and actually belongs to *Dicycymbium nigrum* (Blackwall, 1834). *Savignia harmsi* Wunderlich, 1980 is another dimorphic species, with the two strongly differing male morphs: *typica* and *cor*.

Keywords: Araneae, dimorphic Linyphiidae, *Diplocephalus*, Savignia

For a long time, dimorphic erigonid spiders were not recognised as such and considered separate species. Only when morph differences were small, for example in the size of the cephalic tubercle or the post-ocular sulci, were these sometimes considered variations. Holm (1979: p. 269) wrote about *Pelaeops mengi* (Simon, 1884): “The males occur in two different forms, the one, which is the most frequent, with a high cephalic lobe and large sulcal orifice, the other with lower lobe and with much smaller orifice. … As no intermediate forms have been found and moreover, the two types of males have quite similar palpal tubiae and bulbs and are found together, the males of *P. mengi* seem to be dimorphic”. Similarly, Bosmans & Abrus (1992) considered the specimens of *Pelecopsis oranensis* (Simon, 1884) with small and large postocular sulci, but having identical palpal tubiae and bulbs, as morphs of the same species. *Diplocephalus marijai* Bosmans, 2010 from Spain is another species occurring in two morphs (Bosmans et al. 2010). The decision to recognise species as being dimorphic is not easy or consequent. Roberts (1987) proposed *Troxochrus scabriculus* (Westring, 1851) and *T. cirrifrons* (O. Pickard-Cambridge, 1871) to be one, dimorphic species, but this is not followed in the World Spider Catalog (2018) where they are still considered two separate species. On the contrary, when the same author (Roberts 1987) proposed *Diplocephalus connatus* Bertkau, 1889 and *D. jacksoni* (O. Pickard-Cambridge, 1904) to be forms of the same species, this opinion was accepted in the World Spider Catalog (2018).

The best documented case of dimorphic linyphiid spiders is that of *Oedothorax gibbosus* (Blackwall, 1841) and *O. tuberosus* (Blackwall, 1841) having very different cephalic tubercles and because of that considered separate species in older identification books (e.g., Locket & Millidge 1953, Wiehle 1960, Palmgren 1976). After a detailed study of the male palps of several *Oedothorax* species, Bosmans (1985) concluded that all palpal sclerites of *O. gibbosus* and *O. tuberosus* were completely identical and the two species names were synonymized. De Keer & Maelfayt (1988) provided further evidence from breeding experiments. They reared spiderlings from the same egg sac and obtained both forms. In our opinion, when palpal sclerites are identical, specimens should be treated as belonging to the same species.

The aim of the present paper is to discuss two more cases of male dimorphism in Linyphiidae.

Material and methods

The material studied was collected by the authors or loaned from museum collections. Species were examined by mean of a Nikon SMZ1270 stereo microscope. Details of male palps and female epigynes were studied with an Olympus CH-2 microscope with a drawing tube. Left palps are illustrated.

Male palps were detached and transferred to glycerol for examination under the microscope. Female epigynes were excised using sharpened needles. These were then transferred to clove oil for examination under the microscope. Later, palps and epigynes were returned to 70% ethanol.

A forgotten case of dimorphism

Males and females of *Diplocephalus cristatus* (Blackwall, 1833) were first described by Blackwall (1833) from England as *Walkenaeria c*. Subsequently, O. Pickard-Cambridge (1875) described *Erigone foraminifera* Pickard-Cambridge, 1875 from France. Differences between the two species were based on differently shaped cephalic lobes. Pickard-Cambridge (1875: p. 208) stated that *E. foraminifera* is also allied to *E.
Male dimorphism in Linyphiidae

Georgescu (1969) was the first author to propose that *D. cristatus*, *D. foraminifer*, *D. bicephalus*, *D. rectilobus* and *D. thyrsiger* all belong to the same species, occurring in two morphs: *cristatus* and *foraminifer*. She also included *Diplocephalus cras-silobus* (Simon, 1884) in that list, but the conformation of the male palp of the latter species is completely different (cf., Mil-lidge 1979, Pesarini 1996). The suggestion by Georgescu has not been followed and in the World Spider Catalog (2018), these names are currently listed as separate species. We have been able to re-examine the material of all these *Diplocephalus* species, including the types of *D. bicephalus* and *D. rectilobus*, and can confirm Georgescu’s proposal.

Fig. 1: a-c. *Diplocephalus cristatus* (Blackwall, 1833) (Belgium), d-f. *D. rectilobus* (Simon, 1884) (the holotype), g-i. *D. foraminifer* (O. Pickard-Cambridge, 1875) (Greece), j-l. *D. bicephalus* (Simon, 1884) (the lectotype), m, o: *D. arvernus* Denis, 1948 (from Denis 1948, figs 1-8); n. *D. foraminifer* (O. Pickard-Cambridge, 1875) (from Deltshev, 1985, fig. 7); a, d, j, m. Male prosoma, lateral view; b, e, h, k, n. Male palp, lateral view; c, f, i, l, o. Male palpal tibia, dorsal view.
Diplocephalus cristatus (Blackwall, 1833) (Figs 1a-n, 2a-f)

Walckenaeria cristatus Blackwall, 1833: 107 (♂); the type from England, Manchester, Cheetham, not examined.

Erigone foraminifera O. Pickard-Cambridge, 1875: 207, pl. 28, fig. 15 (♂); the type from France, Hautes-Alpes, Col de Natoya; not examined.

Prosoponcus foraminifer Simon, 1884: 572, 382-383, figs 672, 673.

Prosoponcus rectiloba Simon, 1884: 573, figs 384-385 (♀); examined. N. Syn.

Diplocephalus rectilocus Simon 1926: 377, 495.

Diplocephalus bicephalus Simon 1926: 495, figs 672-673 (♂ only, ♀ = Dicymbium nigrum).

Diplocephalus foraminifer Simon 1926: 377, 495, figs 667-668.

Diplocephalus foraminifer thyrsiger Simon 1926: 378, 495, figs 669-671.

Diplocephalus arvernus Denis, 1948: 238, figs 1-8 (♂); not examined. N. Syn.

Type material. Lectotype ♀ of Diplocephalus bicephalus Simon, 1884 (designated here) from France, Pyrénées-Orientales, between Prats-de-Mollo and La-Preste, Coll. Simon 4914 AR 12084 (MNHNP); 2 ♀ paralectotypes of D. bicephalus belonging to Dicymbium nigrum (Blackwall, 1834). – Holotype ♀ of Prosoponcus rectiloba Simon, 1884 from France, Haute-Savoie, Les Contamines, Coll. Simon 25107 AR12085 (MNHNP); examined.

Comments on the type material

The only material of Diplocephalus bicephalus (originally as Prosoponcus b.) that is available in MNHNP is the male,
which is therefore designated as the lectotype. The two accompanying females belong to *Dicymbium nigrum* (Blackwall, 1834), and Simon's figure 674 (Simon 1884) obviously shows the epigyne of this species. The only material of *Prosoponcus rectilobus* available in the MNHNp is the male holotype.

Comments on the synonymy

We first became interested in the *Diplocephalus cristatus* complex, while studying specimens collected by Antony Russell-Smith from Lefkada, Greece (Fig 2). A number of males and females were collected from near a spring and they are illustrated in Fig 2. Having tried to identify these specimens, we found out that their palps and epigynes were completely similar to those of the common European species *D. cristatus*, but the males had very different cephalic lobes. Further research showed a clear match with *D. foraminifer* and *D. arvernus*, as illustrated by Deltshev (1985), Denis (1948) and Georgescu (1969) – compare above the section “A forgotten case of dimorphism”.

Figs 1b-c, e-f, h-i, k-l and n, o show the male palps and palpal tibiae of respectively *D. cristatus*, *D. rectilobus*, *D. foraminifer* and *D. arvernus*. Detailed examinations of all palpal sclerites and palpal tibiae revealed no differences. Simon (1926: p. 495) already wrote about *D. rectilobus* in a footnote: “Peut-être une forme ou variété de *D. cristatus*”. Thus, in our opinion, the males of *D. cristatus* occur in two morphs: viz., Figs 1a, d show the morph *cristatus* with a low cephalic lobe, and Figs 1g, j, m and 2a show the morph *foraminifer* with a high cephalic lobe.

Distribution and habitat

Specimens of *Diplocephalus morph cristatus* occur all over Europe (Nentwig et al. 2017). On the contrary, the morph *foraminifer* has a much smaller distribution: northern Spain, southern France, Switzerland and northern Italy in the western part of Europe, and Bosnia and Herzegovina, Macedonia, Montenegro, Bulgaria, Serbia and Romania in the eastern part (Nentwig et al. 2017).

The morph *cristatus* occurs in a variety of habitats: “in grass, straw, moss, etc.” (Locket & Millidge 1953), “auf offenen Flächen, an Waldrändern, in Gärten” (Heimer & Nentwig 1991). The morph *foraminifer* occurs in a much narrower range of specialized habitats. These spiders are frequently found under stones at high altitudes in the Cantabrian Range, the Pyrénées, the Massif Central and the Alps (Simon 1884, 1926, Bosmans & de Keer 1985, Denis 1953, 1955, Hänggi & Stäubli 2012, Müller 1985). At lower altitudes, these spiders occur in more restricted habitats such as caves, near springs and rivulets and in screes and cracks (Denis 1934, Georgescu 1969, Deltshev 1985), rarely in deciduous woodlands (Grbic & Savic 2010).
A new case of male dimorphism: Savignia harmsi Wunderlich, 1980 (Figs 3a-d, 4a-d, 5a-g)

Comments. At first glance, the five studied males appear to belong to different species, because their prosomas have very different shapes (Figs 4a-c, 5a-c). However, their palp conformation is identical (cf. Figs 3e and 3f). The first morph (Fig. 4a-b) has a nose-like projection carrying the anterior median eyes, like in Savignia frontata Blackwall, 1833. Apparently, because of this resemblance Wunderlich (1980) placed the species in the genus Savignia. The second morph (Fig. 4c-d) has a completely different cephalic lobe in the form of a large, rounded lobe, heart-shaped in the anterior view (Fig. 4d). For this morph, the name cor (Latin for heart) is herein proposed. If this morph was found first, the species would probably have been described in Diplocephalus.

Distribution. S. harmsi was described from both sexes from Spain, in the province of Malaga (Wunderlich 1980). It was recollected from the neighbouring province of Granada. It was not yet recorded since the original description (Morano et al. 2014).

Acknowledgements
Christine Rollard (MNHN) and the individual collectors mentioned in ‘Material and methods’ are sincerely thanked for allowing us to study the material of Diplocephalus species under their care. Thanks also to Laura Zarcos for providing the specimens of Savignia harmsi. Finally, we wish to thank Antony Russell-Smith and an anonymous referee for their critical comments on the manuscript which helped us to improve it.

References
Denis J 1948 Araignées de France. II. Araignées des Monts Dore. – Revue Française d’Entomologie 15: 236-249
Grbic G & Savic D 2010 Contribution to the knowledge of the spider fauna (Arachnida, Araneae) on the Fruska Gora Mt. – Acta entomologica serbica 15: 243-260
Keer R de & Maelfait J-P 1988 Oedothorax gibbosus (Blackwall) and Oedothorax tuberosus (Blackwall): one species. – Newsletter of the British Arachnological Society 53: 3
Millidge AF 1979 Some ergonine spiders from southern Europe. – Bulletin of the British Arachnological Society 4: 316-328