Translator Disclaimer
1 November 2014 Organic Carbon Pools and Genesis of Alpine Soils with Permafrost: A Review
Author Affiliations +

Soils with mountain permafrost occupy 3.5 million km2 worldwide, with 70% in central Asia. High-mountain environments have “warm” permafrost, with surface permafrost temperatures of -0.5 to -2 °C and deep active layers (2 to 8 m). From a global database of 41 sites and 312 pedons, alpine soils with permafrost are strongly acid (pH = 5.0 to 5.5), have intermediate cation-exchange capacities (20 to 25 cmolc/kg) and base saturation (44% to 85%), and commonly have an isotic mineral class. Soil organic carbon is concentrated in the upper 30 to 40 cm, with profile density averaging 15.2 ± 1.3 kg m-2 (range = <1.0 to 88.3 kg m-2), which is comparable to temperate grasslands (13 kg m-2) but substantially less than moist arctic tundra (32 kg m-2). Mountain soils with permafrost contain 66.3 Pg of soil organic carbon (SOC), which constitutes 4.5% of the global pool. In contrast, the SOC pool in the Arctic is 496 Pg (33% of the global pool). Alpine soils with deep active layers contrast strongly with high-latitude soils in areas of continuous permafrost. Permafrost in the upper 2 m induces cryoturbation in the profile, acts as a barrier to water movement, and generates cooler temperatures resulting in greater SOC levels. High-elevation and high-latitude soils are experiencing warming of air temperature and permafrost and a thickening of the active layer.


Permafrost is defined as a condition whereby a material remains below 0 °C for two or more years in succession (van Everdingen, 1998). Mountain permafrost has received attention from the International Permafrost Association “Mapping and Modeling of Mountain Permafrost” working group. The first map of mountain permafrost and geocryological types was prepared by Gorbunov (1978) from a review of the literature and his experience in the former Soviet Union. The most recent map of mountain permafrost was prepared by Haeberli et al. (1993), who revised Gorbunov’s map of mountain permafrost from a review of the literature in response to the concern of climate change impacts on mass wasting. Their map suggested that mountain permafrost occupies 4.88 million km2, which is nearly double that from the map of Gorbunov (1978).

Gruber (2012) derived a high-resolution estimate of global permafrost distribution by country from a model based on mean annual air temperature (MAAT) and the combined effects of snow cover, exposure to solar radiation, and vegetation. Although the study did not distinguish between high-elevation and high-latitude permafrost, the areas for permafrost in mountainous countries at mid-latitudes were more comparable to the estimates of Gorbunov (1978) than those of Haeberli et al. (1993), suggesting that the global distribution of mountain permafrost may be closer to Gorbunov's estimates than those of Haeberli et al. (1993). However, Gruber's (2012) estimates for the area of mountain permafrost in Mongolia (382,000 km2) are considerably less than those of Gorbunov (1.4 million km2) and Haeberli et al. (1993) (1.0 million km2).

Whereas permafrost covers 23 million km2 at the high latitudes, mountain permafrost covers an area from 2.5 million km2 (Gorbunov, 1978) to 4.9 million km2 (Haeberli et al., 1993) and may account for 14% of the permafrost worldwide. Nearly 70% of the mountain permafrost occurs at the “Third Pole,” the high mountains of central Asia (Zhao et al., 2012).

The delineation of permafrost in mountain regions has been determined from drilling or road cut observations (Harris and Brown, 1982; Sharkhuu, 2003; Cheng, 2005; Wu et al., 2010; Mutter and Phillips, 2012); geophysical techniques such as electric-resistivity tomography (ERT), ground-penetrating radar (GPR), and shallow seismic refraction (SSR) (Leopold et al., 2010); as well as inferences from mean annual air temperatures (Péwé, 1983); periglacial features resulting from the presence of an active layer, such as active ice-cemented (lobate) rock glaciers or ice-cored moraines (Urdea, 1998; Fukui et al., 2007; Lilleøren and Etzelmüller, 2011; Alonso and Trombotto, 2012); basal temperature of snow (Lewkowicz and Ednie, 2004; Julián and Chueca, 2007; Ruiz and Trombotto, 2012; Bonnaventure and Lewkowicz, 2013); and models based on climate, topography, and other factors (Harris, 1986; Burn, 1994; Gruber and Hoelzle, 2001; Janke, 2005; Etzelmüller et al., 2007; Allen et al., 2008; Etzelmüller and Frauenfelder, 2009; Arenson and Jakob, 2010; Boeckli et al., 2012; Janke et al., 2012; Zhao et al., 2012). Although permafrost tends to be sporadic in many mid-latitude mountain ranges, it can be discontinuous (i.e., covers 50–90% of ground) or even continuous (90%–100%) at the higher latitudes and in large mountain massifs such as the Qinghai-Tibet Plateau (QTP).

An examination of the topic “alpine soils” in the Web of Science reveals that interest in alpine soils has increased sharply from three papers per year during 1960 to 1990 to 230 publications per year during 2002 to 2012. High-mountain soils are globally important because they are critical sources of water, are centers of biodiversity, and influence global atmospheric and cryospheric systems. Mountain soils with permafrost store large quantities of soil organic carbon (SOC) (Wang et al., 2002; Garcia-Pausas et al., 2007; Ohtsuka et al., 2008; Baumann et al, 2009; Celi et al., 2010; Wu et ah, 2010; Budge et al., 2011; Kabala and Zapart, 2012; Dörfer et al., 2013; Zollinger et al., 2013) and, therefore, may release large amounts of carbon dioxide in a warming scenario (e.g., Schuur et al., 2013).

The objectives of this study are to (1) update the calculation of the area of mountain permafrost from literature published since 1993 when the last mountain permafrost map was produced, (2) analyze data from mountain soils with permafrost worldwide, (3) determine the SOC contents of these soils, (4) evaluate the role of various soil-forming factors in pedogenesis of soils containing mountain permafrost, and (5) compare and contrast soils influenced by mountain permafrost with those affected by high-latitude permafrost.

In this study, we use the terms mountain and alpine interchangeably with regard to soils underlain by permafrost, recognizing that mountain could be interpreted as any large landform in the form of a peak, with or without permafrost, and alpine refers to the area above treeline; however, permafrost may exist in forests at the upper limit of treeline, that is, in the subalpine life zone.



For purposes of this study, we have followed the protocol of Gorbunov (1978) in setting the elevation for mountain permafrost at an arbitrary threshold of 500 m so as to minimize the inclusion of high-latitude permafrost in our estimates. The study area includes the Brooks Range, Rocky Mountains, Coast Ranges, Cascade Range, Sierra Nevada, and Appalachian Mountains of North America; the Andes Mountains of South America; the mountains of Iceland, Greenland, Svalbard, and Fennoscandia; the Alps, Pyrenees, Carpathians, and Urals of Europe; the Caucasus, Himalayan-Karakoram-Hindu Kush (Qinghai-Tibet Plateau), Pamir-Tien Shan-Djungar Alatau, the Khingai-Altai Mountains of central Asia; the Yablonoi-Sayan-Stanovai Mountains of Siberia; the Japanese Alps; and the Southern Alps of New Zealand (Fig. 1). We recognize that the existence of sporadic permafrost in many mountain environments makes area estimates and other interpretations problematic.

The elevation at which mountain permafrost is reported in the literature ranges from as low as 500 m (by the earlier definition) in high-latitude environments such as Iceland, Greenland, Svalbard, and the subpolar portions of the Caucasus Mountains to >5000 m in the central Andes, Qinghai-Tibet Plateau (QTP), and tropical mountains (Table 1). The active-layer thickness ranges from >0.5 m in high-latitude mountain environments such as Iceland or Greenland to more than 8 m in the Andes, European Alps, and Altai Mountains. Permafrost may exist in mountains where the mean annual air temperature (MAAT) is as warm as 1.4 °C, but a value of -3 °C or lower is more typical of areas containing mountain permafrost (Lewkowicz and Ednie, 2004; Etzelmüller et al., 2007; Gruber, 2012). At the other extreme, MAAT values as low as -10 °C have been recorded in mountains of Alaska, Fennoscandia, and the QTP (Table 1). The mean annual precipitation of areas with mountain permafrost ranges from 250 mm yr-1 for the Yukon Territory of Canada and parts of the central Asian mountains to over 2000 mm yr-1 in the European Alps, Japanese Alps, and the Southern Alps of New Zealand (Table 1). Annual snowfall ranges from a meter to more than 20 m, although wind redistribution can produce significant local differences in snow depth (Table 1).


The distribution of mountain permafrost was determined from regional maps published since the Haeberli et al. (1993) map, including the circumarctic map of Brown et al. (1997) and maps of permafrost in the European Alps (Boeckli et al., 2012), Iceland (Etzelmüller et al., 2007), Norway (Lilleøren and Etzelmüller, 2011), central Asia (Li and Chang, 1996; Marchenko et al., 2007; Zhao et al., 2012), and the Andes (Trombotto, 2000).


Morphological and analytical data were obtained for soils of each mountain range containing permafrost from the published literature. Our database was derived from 41 studies and included 312 pedons. Data were also obtained from the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS), including Official Soil Descriptions (Soil Survey Division, 2013a), soil classification data (Soil Survey Division, 2013b), and soil characterization data (Soil Survey Division, 2013c).

The profile density of SOC was obtained from the literature or was calculated from data in the literature. The data requirements included classification of soils by either Soil Taxonomy (ST) or the World Reference Base for Soil Resources (IUSS Working Group WRB, 2006), SOC or loss-on-ignition (LOI) values, the proportion of coarse fragments (>2 mm), and bulk density. In the database, bulk densities were reported for 19% of the soil horizons, coarse fragments for 43%; 55% of the soils were classified; and 100% of the horizons contained data for SOC or LOI. Where bulk density was not provided, we estimated it from an equation relating SOC or LOI adjusted to SOC to bulk density using the existing database (Fig. 2). It is of interest that this equation has a similar intercept and exponent as those developed for the alpine zone of Mount Mansfield, Vermont, by Munroe (2008).

For pedons where the proportion of coarse fragments was not provided, we used a default value of 45%, which constitutes the mean value from those studies reporting coarse fragments. Where soils had not been classified in ST or WRB, we classified them from existing data, including horizonation, base saturation, and SOC. We used established equations (e.g., Bockheim et al., 2000a) for estimating profile SOC pools.

An SOC budget for high-mountain areas was prepared by summing the product of mean SOC density for each mountain range and the estimated permafrost area of that range. The geomorphology, soils, and climate-change effects in high-elevation environments were compared to those of high-latitude environments from the literature.



The total area of mountain permafrost was estimated to be 3.56 million km2 (Table 2), which is intermediate between those of Gorbunov (1978) at 2.46 million km2 and Haeberli et al. (1993) at 4.88 million km2 (Table 1). Our data suggest that the single largest region with alpine permafrost is the QTP, at 1.3 million km2, which constitutes 54% of the plateau. The next largest area of mountain permafrost is Khangai-Altai Mountains of Mongolia and Russia at 1.0 million km2, Alaska's Brooks Range (263,000 km2), the Siberian Mountains (255,000 km2), Greenland (251,000 km2), the Ural Mountains of Russia (125,000 km2), the Andes Mountains of South America (100,000 km2), the Rocky Mountains of the United States and Canada (100,000 km2), and the Fennoscandian mountains (75,000 km2). The remaining mountain ranges collectively contain less than 100,000 km of alpine permafrost.


Location of mountainous regions of the Avorld considered in this study (see also Table 1).



The following interpretations are based on the full database of 312 pedons; 14 representative pedons are included in Table 3 from mountain ecosystems throughout the world. Investigation of this data set reveals a number of properties shared by the majority of soil pedons containing mountain permafrost. For instance, although calcareous alpine soils have been reported with pH values as high as 8.0–8.5 (Nimios and McConnell, 1965; Knapik et al., 1973; Kabala and Zapart, 2012), most alpine soils with permafrost generally are strongly acidic (pH = 5.0 to 5.5). Alpine soils generally have an intermediate cation-exchange capacity (20 to 25 cmolc kg-1) and base saturation (44% to 85%), abundant SOC especially in the A horizon (4% to 15%, Table 3).

An isotic mineral class is common in mountain soils with permafrost in many areas, including the Rocky Mountains (Knapik et al., 1973; Dahms et al., 2012), Andes (Miller and Birkeland, 1992; Mahaney et al., 2009), Iceland (Arnalds, 2008), Svalbard (Kabala and Zapart, 2012), the European Alps (Egli et al., 2003, 2006; Dahms et al., 2012), and Mount Everest (Bäumler and Zech, 1994). In the NRCS database, 16 of the 26 alpine soil series (62%) have an isotic mineral class (Table 4).


Soil organic C tends to be concentrated in the upper 30 to 40 cm of alpine soils even when they are derived from deep unconsolidated sediments (Bockheim et al., 2000a; Yang et al., 2008; Baumann et al., 2009; Budge et al., 2011; Dörfer et al., 2013). Many alpine soils on the QTP are shallow to bedrock; for this reason, SOC density is often reported there to a depth of 30 cm. Soil organic C is reported in the literature at depth intervals ranging from 0 to 30 cm to 0 to 150 cm, and in two studies at variable depths from the soil surface to bedrock (Table 5). The mean value for profile SOC was 15.2 ± 1.3 kg m-2 and the range was <1.0 to 88.3 kg m-2. Soil organic C densities were compared among soil orders using the non-parametric Mann-Whitney test. Histosols contained the greatest amount of profile SOC at 52 kg m-2, followed by Spodosols (27.2 ± 4.5), Alfisols (27 ± 11), Gelisols (20.0 ± 6.0), and Mollisols (18.6 ± 11), and with significantly lower quantities of SOC in Inceptisols (13.5 ± 0.86) and Entisols (6.2 ± 1.1) (Fig. 3).


Alpine soils described in the literature that are underlain by permafrost occur in 8 of the 12 orders identified in Soil Taxonomy (Soil Survey Staff, 1999, 2010), including (from most to least prevalent) Inceptisols, Entisols, Spodosols, Gelisols, Histosols, Alfisols, Mollisols, and Andisols (Table 5). Andisols, not listed in Table 5, occur in soils of Iceland underlain by permafrost (Thorhallsdottir, 1983; Arnalds, 2008) for which we had no SOC data. Cryorthents are common on young glacial drift, especially in the nival zone (Table 5). Dystrocryepts support alpine grasslands and are common on acidic parent materials. Humicryepts are a dominant soil great group in alpine areas of the world, which are variously identified as Alpine Turf or Mountain Meadows. Haplocryods are restricted to alpine areas with a humid climate, coniferous vegetation, and siliceous parent materials, such as the northern Rocky Mountains and Appalachian Mountains of eastern North America, and the European Alps (Burns. 1990). Gelisols, which require permafrost within 1 to 2 m of the surface, occur primarily in the mountains of Arctic regions, such as in Iceland, Greenland, Svalbard, the Brooks Range in northern Alaska, and the subpolar Caucasus. Histosols are especially common in the alpine zone of the Appalachian and southern Andes Mountains and in local bedrock depressions elsewhere.


Site conditions for mountain permafrost throughout the world.





Relation of soil organic carbon to bulk density from data contained in the alpine soils with permafrost literature.


The NRCS SSURGO database contains information about more than 23,000 soil series in the United States and its territories. The database contains 11 soil series with likely permafrost and another 15 with possible permafrost (Table 4). These soils are dominantly Humicryepts (46%), followed by Humicryods and Haplocryods (31%), and Dystrocryepts (15%). The soil series with likely permafrost are located mainly in the southern and central Rocky Mountains. The soil series with possible permafrost occur in the Appalachian Mountains, the Rocky Mountains, and the Sierra Nevada.

It is of interest that nearly all of the soils examined in the literature had a cryic soil-temperature regime (STR; mean annual soil temperature 0–7 °C at 50 cm); only a few of the soils had a gehe STR (mean annual soil temperature ≤0 °C at 50 cm). Soils in Gel- suborders and great groups (i.e., have a gehe STR) occur primarily in the Arctic, Gelisols, which must have permafrost within the upper 1 m (Histels and Orthels) or 2 m (Turbeis), comprise only 2.35 million km2 or 52% of the area with alpine permafrost (Bockheim, 2014).



The key factors influencing SOC density of alpine soils underlain by permafrost include (1) vegetation type (Wang et al., 2002; Darmody et al., 2004; Wu et al., 2012), (2) snowfall amount and duration (Burns, 1980; Bockheim et al., 2000a), (3) soil-moisture content (Baumann et al., 2009; Wu et al., 2012; Dörfer et al., 2013), (4) active-layer thickness (Dörfer et al., 2013), (5) elevation (Ohtsuka et al., 2008; Budge et al., 2011), (6) soil type (Matsui et al., 1971; Munroe, 2008; Baumann et al., 2009), and (7) soil age (Birkeland, 1984; Bockheim et al., 2000a; Egli et al., 2001; Darmody et al., 2005; Mahaney et al., 2009; Dahms et al., 2012; Kabala and Zapart, 2012). Factors that were unrelated to SOC density in the literature include aspect (Egli et al., 2006) and the presence of permafrost (at an unspecified depth; Zollinger et al., 2013).

On the QTP, SOC contents varied according to vegetation type, including alpine meadows (54.8–71.6 kg m-2), alpine steppe (11.5–20.8 kg m-2), alpine cold desert (7.8–9.7 kg m-2), and alpine desert (2.2–4.4 kg m-2) (Wang et al., 2002). These differences were attributed to the effects of different vegetation types on litter C production and ecosystem respiration of CO2.

Snow cover significantly impacts annual carbon and nutrient cycles. Burns (1980) divided ridge-top alpine tundra in the Colorado Front Range into seven topographic-climate regions that explain relative differences in the winter snow cover and SOC contents. Extremely windblown environments and late melting snowbanks had the lowest levels of SOC (4.8–5.5 kg m-2), whereas early melting snowbanks and wet meadows had the highest levels, at 15.1 and 17.0 kg m-2, respectively (Burns, 1980; Bockheim et al., 2000a). These trends likely are related to differences in available soil moisture and its effect on productivity of alpine plant communities and on decomposition rates influenced by growing season length.

Baumann et al. (2009) sampled soils along a 1200-km transect across the Tibetan Plateau, showing that soil moisture was the dominant parameter explaining 64% of the variation in SOC contents. The highest particulate organic matter levels in these soils occur in soils with high soil moisture contents (Dörfer et al., 2013). Another study on the QTP showed that SOC densities were mainly affected by soil depth and soil-moisture content (Wu et al., 2012).

The lower part of the active layer may be an important source of water during summer thawing in permafrost environments. For example, permafrost thawing was identified as a cause of recent hydrologic changes in a Colorado alpine basin (Caine, 2010). Soil organic C stocks were strongly correlated with active-layer thickness in discontinuous permafrost on the QTP but not in continuous permafrost (Dörfer et al., 2013). The latter authors suggested that permafrost-affected soils in discontinuous permafrost environments were more susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature, and, therefore, evaporation.


Distribution of mountain permafrost (103 km2).


Ohtsuka et al. (2008) measured SOC pools in alpine to nival zones along an altitudinal gradient (4400–5300 m) on the Tibetan Plateau. The SOC levels increased with elevation from 4400 to 4950 m in the alpine grassland (1.7 kg C m-2), but decreased with further elevation in the nival zone to 1.0 kg C m-2. These differences were attributed to changes in decomposition activity with elevation. In the Swiss Alps, Budge et al. (2011) obtained a significant correlation between the proportion of labile C in 20-cm-deep soil cores and site elevation.


Using our estimate of 3.32 million km2 for the area of mountain permafrost (Table 1) and the SOC densities in Table 4, we estimate the SOC pool for areas with alpine permafrost to be 66.3 Pg, which is 4.5% of the global SOC pool of 1500 Pg (Fig. 4). In contrast, the circumarctic region contains 496 Pg of SOC to a depth of 100 cm (Tarnocai et al., 2009), which is about 33% of the global SOC pool. However, as much as 60% of the SOC in high-latitude permafrost-affected soils occurs below 100 cm in the near-surface permafrost (Tarnocai et al., 2009).

Table 3

Analytical properties of alpine soils of the world that are underlain by permafrost.





In the scheme of Bockheim and Gennadiyev (2000), the dominant soil-forming processes in high-mountain environments with permafrost are andisolization, melanization, podzolization, cryoturbation, paludization, and gleization. Cambisolization was not identified in the paper by Bockheim and Gennadiyev (2000), but was suggested by D. Yaalon (personal communication) as an additional key soil-forming process.


Soil series in alpine areas of the U.S.A.





Soil organic carbon density in alpine soils underlain by permafrost.




Andisolization refers to the formation of amorphous minerals (allophone) from weathering of volcanic ash and other silica-rich materials, a process that is especially prevalent in high-rainfall environments (Parfitt et al., 1983). High-mountain soils often have an isotic mineral class (Table 3), which is defined on the basis of two criteria: a pH ≥8.4 in a NaF extract and a ratio of 1500 kPa water content to percent clay of ≥0.6 (Soil Survey Staff, 1999, 2010). The test with NaF is designed as a relatively quick measurement of the content of the non-crystalline minerals (e.g., allophone, imogolite) in a soil (Fieldes and Perrott, 1966). The initial pH of the NaF is 7.5–7.8 so that a value in excess of 8.4 is indicative of poorly crystalline minerals as the fluoride anion displaces hydroxyl ions and complexes Al.

There are 1001 soil series with an isotic mineral class in the NRCS database (Soil Survey Division, 2013a, 2013b, 2013c). Fifty-three percent of these soil series are Inceptisols, which also constitute the dominant order of mountain soils with permafrost identified in the present study. Sixty-four percent of the soils containing an isotic mineral class in the NRCS database have a frigid or cryic soil-temperature regime, suggesting that a cryic soil-temperature regime is conducive to the development of amorphous minerals. None of the 52 Gelisols in the NRCS database contains an isotic mineral class; rather, they all have a mixed mineralogy. Together these findings suggest that the formation of amorphous minerals common to high-mountain soils is favored by abundant soil moisture, a frigid or cryic but not gelic soil-temperature regime, and siliceous parent materials.

Melanization refers to the accumulation of well-humified organic matter within the upper mineral soil. This process is evidenced in high-mountain soils by thick A horizons (Table 3) and comparatively high SOC densities (Table 5).

Although not requiring permafrost, cryoturbation (froststirring) is a common process in permafrost-affected soils and is manifested by patterned ground on the land surface and irregular and broken horizons, organic matter accumulation on the permafrost table, oriented stones, and silt caps within the soil. Patterned ground is a common feature in high-mountain environments, covering from 5% to 19% of the ground surface (Johnson and Billings, 1962; Niessen et al., 1992; Hort and Luoto, 2009; Feuillet, 2011). In addition to high-latitude mountain environments, such as Iceland (Arnalds, 2008), Svalbard (Kabala and Zapart, 2012), and the Scandinavian Mountains (Darmody et al, 2000, 2004), cryoturbation has been reported in the central Rocky Mountains of the United States (Bockheim and Koerner, 1997; Munroe, 2007). the Swiss Alps (Celi et al., 2010; Zollinger et al., 2013), and the Ural Mountains (Dymov et al., 2013). In many of these locations, it is not clear whether the cryoturbation is active today or is a relict from colder (glacial?) climates. Although the permafrost table is deep in many alpine soils with permafrost today, the active layer may have been shallower under colder climatic conditions in the past, making these soils function more like Turbels. Outside of the areas noted above, we found only a few published reports of cryoturbation in high-mountain soils of central Asia or the Andes. Smith et al. (1999) reported hummocky, cryoturbated ground in moist depressions around 5000 m on the Qinghai Plateau, but no permafrost was observed within 2 m of the surface. In the Khangai Mountains of Mongolia, Krasnoshchekov (2010) attributed the lack of cryoturbation to the presence of dry permafrost.


Soil organic carbon density in relation to soil taxa.



Distribution of soil organic carbon in alpine soils (this study) relative to soils of other life zones ( Jobbágy and Jackson, 2000).


Cambisolization leads to the formation of weakly developed Bw (cambic) horizons. This process is pervasive in mountain environments with permafrost, as evidenced by the abundance of Inceptisols (Table 5). The abundance of Inceptisols in alpine regions may be due to the fact that many of these soils are young and pedogenesis is inhibited by slow rates of weathering and horizon formation. Küfmann (2008) suggested that many of the Inceptisols (Cambisols) in alpine karst of the Northern Calcareous Alps of Germany are of eolian origin rather than from weathering in situ. However, this does not imply that Inceptisols in alpine areas worldwide are of similar origin.

Podzolization is a complex collection of processes that includes eluviation of base cations, weathering transformation of Fe and Al compounds, mobilization of Fe and Al in surface horizons, and transport of these compounds to the spodic horizon as Fe and Al complexes with fulvic acids and other complex polyaromatic compounds. This process occurs in many high-mountain environments throughout the world, particularly in subalpine areas with a humid climate, coniferous vegetation, and siliceous parent materials (Burns. 1990; Skiba, 2007).

Gleization refers to redoximorphic features such as mottling and gleying that result from aquic conditions; this occurs in most mountain ranges, especially in bedrock depressions.

Paludization refers to the accumulation of histic materials, but does not necessarily imply poor drainage conditions; it is a dominant process in the alpine zone of the Appalachian Mountains (Munroe, 2008). Many of these soils are classified as Cryofolists, which are saturated for less than 30 consecutive days per year and may store up to 60 kg m-2 of SOC.

The other soil-forming processes identified by Bockheim and Gennadiyev (2000) occur to a limited extent in high-mountain environments, including alluviation, biological enrichment of bases, and calcification. Argillic horizons have been reported in the central Rocky Mountains of the United States (Burns, 1980; Bockheim and Koerner, 1997; Munroe, 2007). These features are common in pedons between 3400 and 3600 m in the Uinta Mountains of Utah; however, it is unclear whether they are forming under modern conditions or are relict from a previous milder soil climate (Bockheim and Koerner, 1997; Munroe, 2007).

Haplocryolls with high base levels are common in the central Rocky Mountains (Burns, 1980; Bockheim and Koerner, 1997; Munroe, 2007). Bockheim et al. (2000b) reported that base cycling is enhanced in alpine communities dominated by Acomastylis (Geum) rossii, as evidenced by large profile quantities and high tissue concentrations of Ca. Calcification has been reported in alpine soils in the northern Rocky Mountains (Nimios and McConnell, 1965; Knapik et al., 1973), Svalbard (Kabala and Zapart, 2012), and in the semiarid mountains of central Asia (Kann, 1965).


A question that arises from this review: What role does permafrost occurring at depths of 2 to 8 m play in pedogenesis? To address this question, we compared soils in high-elevation (alpine) environment with those in high-latitude (arctic) environments, recognizing that active-layer thicknesses have changed during glacial-interglacial intervals. The area of high-elevation permafrost is considerably less than that of high-latitude permafrost (Table 6). The mean SOC density is also greater for arctic soils, and as a result the total SOC pools are larger for arctic regions. At the pedon scale, the depth-distribution of SOC in profiles from the arctic and alpine regions varies significantly. In alpine regions with permafrost, SOC is concentrated in the upper 30 to 40 cm of the soil profile and decreases regularly with depth (Bockheim et al., 2000a; Baumann et al., 2009; Yang et al., 2008; Dörfer et al., 2013). In contrast, SOC in arctic soils is concentrated at the base of the active layer and in the transition zone between the active layer and near-surface permafrost, because of intensive cryoturbation accompanied by compaction (Bockheim et al., 2003).

The thermal regime also varies in important ways between arctic and alpine permafrost soils. Most notably, alpine permafrost soils typically feature a deep active layer, which can be attributed to high summer temperatures and reduced volumes of ground ice (Pang et al., 2009). Figure 5 shows measured soil temperatures through a representative year at two depths in an alpine soil at 3,700 m in the Uinta Mountains of the central Rocky Mountains and a Gelisol in arctic Alaska. On the basis of a MAAT <0 °C, permafrost is likely present beneath this alpine soil profile, although the active layer is more than 100 cm thick. Similar conditions occur in the ultra-continental region of central Sakha, Russia, where the active-layer depth is in excess of 2 m despite a MAAT of -9 °C or lower (Lessovaia et al., 2013).

Both soil profiles in Figure 5 exhibit rapid warming in May; however, temperatures in the arctic soil fail to reach 5 °C during the summer, remaining close to 0 °C at a depth of 64 cm. In contrast, summer temperatures at nearly 1 m in the alpine soil profile are almost 5 °C warmer. Warmer summer temperatures are conducive to more rapid breakdown of organic matter, perhaps contributing to the reduced SOC density in alpine permafrost soils.

Temperatures in both profiles fall to ∼0 °C by late September, but the arctic soil remains at this temperature longer (until early December) due to a zero-curtain effect involving the freezing of abundant soil moisture that cannot drain from the profile because of ice at depth. This moisture contributes to the formation of ice lenses and other massive ground ice features that promote cryoturbation. As noted earlier, patterned ground produced by cryoturbation has been reported for alpine soils with permafrost, but it is unclear to what extent cryoturbation is occurring in these soil profiles today. Although the active layer typically extends beneath the base of the pedon in these soils, cryoturbation may have been a more active process during colder climates of the Pleistocene when a shallower permafrost table, and (possibly) more significant accumulations of massive ground ice, impeded subsurface drainage, enhancing volumetric changes associated with freeze/thaw cycles. Under modern conditions with a deep active layer and relatively warm summer temperatures in the solum, the presence of permafrost at depths >2 m may still aid cryoturbation closer to the surface by promoting two-way freezing of the active layer. However, beyond this indirect effect, deep permafrost may contribute little to pedogenesis in alpine soils. It is of interest that alpine Gelisols appear to occur only where the MAAT is -5 °C or colder (Table 1).


Both the high-mountain and high-latitude regions are experiencing major changes due to climate warming. The MAAT in high-mountain regions with permafrost has increased from 0.3 to 1.0 °C decade-1 (Table 6). In the Arctic, the MAAT has increased 0.6 °C decade-1, and along the western Antarctic Peninsula, it has increased 0.7 °C decade-1. The temperature at the top of the permafrost (TTOP) in mountain environments has increased from 0.1 to 0.7 °C decade-1 over the past several decades (Table 6). In the Arctic, TTOP has increased 0.3–0.7 °C decade-1, and in North Victoria Land, Antarctica, it has increased 1.0 °C decade-1. The active-layer depth has increased 1.3 cm yr-1 on the QTP and in sporadic permafrost of subarctic Sweden (Table 6). However, the active-layer depth has remained unchanged over the past two decades in areas of continuous permafrost in the circumarctic (Mazhitova et al., 2004; Tarnocai et al., 2004). In soils with excess ground ice, such as many Arctic Gelisols, temperature increases and deepening thaw depths lead to changes in the hydrologic cycle, thermokarst, and a variety of positive feedbacks. It is less clear what the effect of warming soil temperatures will be on alpine soils where the permafrost table lays beneath the base of the soil profile.


A comparison of geomorphology and soils of high-elevation and high-latitude environments.



  • From recent literature, we estimate the area of mountain permafrost to be 3.6 million km2 which is intermediate between earlier estimates by Gorbunov (1978) and Haeberli et al. (1993).

  • The SOC density of areas with mountain permafrost is estimated to be 66 Pg, which constitutes 4.5% of the world total. In contrast, the SOC density of Arctic permafrost is 496 Pg, which accounts for 33% of the global total.

  • SOC densities in alpine grasslands are comparable to those of temperate grasslands but are less than those in arctic tundra.

  • Estimates of SOC density require the measurement of horizon thickness, bulk density, the concentration of coarse fragments (>2 mm), and SOC. Few of these measurements have been made in mountain permafrost environments outside the Qinghai-Tibet Plateau.

  • Estimates of SOC density in mountain environments with permafrost are complicated by the variable depth to bedrock and the abundance of coarse fragments in the soils. SOC tends to be concentrated in the 0–30 cm layer in areas with deep unconsolidated materials.

  • The presence of permafrost at depths in excess of 2 m does not appear to directly impact SOC accumulation and other soil properties, although cold temperatures at depth may promote cryoturbation in the solum.


A comparison of soil temperatures for alpine tundra in the Uinta Mountains (Munroe, unpublished) with those from arctic tundra (IvotUk, Alaska).



S. Marchenko kindly shared data on permafrost areas in the former Soviet Union. We appreciate comments by two anonymous reviewers.

References Cited


S. Allen , I. Owens , and C. Huggel , 2008: A first estimate of mountain permafrost distribution in the Mount Cook region of New Zealand's Southern Alps. In Proceedings, 9th International Conference on Permafrost, Fairbanks, Alaska, 29 June-3 July, 37–42. Google Scholar


V. Alonso , and D. Trombotto , 2012: Mapping and permafrost altitudes in a periglacial environment: the Laguna del Diamante Reserve (central Andes, Argentina). Zeitschrift für Geomorphologie , 57: 171–186. Google Scholar


M. Aoyama , 2005: Rock glaciers in the northern Japanese Alps: palaeoenvironmental implications since the Late Glacial. Journal of Quaternary Science , 20: 471–484. Google Scholar


L. Arenson , and M. Jakob , 2010: A new GIS based mountain permafrost distribution model. In Proceedings, 63rd Canadian Geotechnical Conference & 6th Canadian Permafrost Conference, Calgary, Alberta, 12–15 September, 452–458. Google Scholar


O. Arnalds , 2008: Soils of Iceland. Jökull , 58: 409–421. Google Scholar


F. Baumann , J.-S. He , K. Schmidt , P. Kühn , and T. Scholten , 2009: Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biology , 15: 3001–3017. Google Scholar


R. Bäumler , and W. Zech , 1994: Soils of the high mountain region of eastern Nepal: classification, distribution and soil forming processes. Catena , 22: 85–103. Google Scholar


P. W. Birkeland , 1984: Holocene soil chronofunctions. Southern Alps, New Zealand. Geoderma , 34: 115–134. Google Scholar


J. G. Bockheim , 1972: Effects of Alpine and Subalpine Vegetation on Soil Development, Mt. Baker, Washington. Ph.D. thesis, College of Forest Resources, University of Washington, Seattle. 171 pp. Google Scholar


J. G. Bockheim , 2014: Cryopedology. New York: Springer Verlag, Progress in Soil Science. Google Scholar


J. G. Bockheim , P. W. Birkeland , and W. L. Bland , 2000a: Carbon storage and accumulation rates in alpine soils: evidence from Holocene chronosequences. In R. Lal , J. M. Kimble. , and B. A. Stewart (eds.), Global Climate Change and Cold Regions Ecosystems. Boca Raton, Florida: Lewis Publishers, 185–196. Google Scholar


J. G. Bockheim , J. S. Munroe , D. Douglass , and D. Koerner . 2000b: Soil development along an elevational gradient in the southeastern Uinta Mountains, Utah, USA. Catena , 39: 169–185. Google Scholar


J. G. Bockheim , and S. F. Burns , 1991: Pergelic soils of the western contiguous United States: distribution and taxonomy. Arctic and Alpine Research , 23: 206–212. Google Scholar


J. G. Bockheim , and A. N. Gennadiyev , 2000: The role of soil-forming processes in the definition of taxa in Soil Taxonomy and the World Reference Base. Geoderma , 95: 53–72. Google Scholar


J. G. Bockheim , and D. Koerner , 1997: Pedogenesis in alpine ecosystems of the eastern Uinta Mountains, Utah. Arctic and Alpine Research , 29: 164–172. Google Scholar


J. G. Bockheim , L. R. Everett , K. M. Hinkel , F. E. Nelson , and J. Brown , 1999: Soil organic carbon storage and distribution in arctic tundra, Barrow, Alaska. Soil Science Society of America Journal , 63: 934–940. Google Scholar


J. G. Bockheim , K. M. Hinkel , and F. E. Nelson , 2003: Predicting carbon storage in tundra soils of arctic Alaska. Soil Science Society of America Journal , 67: 948–950. Google Scholar


J. G. Bockheim , D. A. Walker , and L. R. Everett , 1998: Soil carbon distribution in nonacidic and acidic tundra of Arctic Alaska. In R. Lal , J. M. Kimble. , R. F. Follett , and B. A. Stewart (eds.), Soil Processes and the Carbon Cycle. Boca Raton, Florida: CRC Press, 143–155. Google Scholar


L. Boeckli, A. Brenning , S. Gruber , and J. Noetzli , 2012: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. The Cryosphere , 6: 807–820. Google Scholar


P. P. Bonnaventure , and A. G. Lewkowicz , 2013: Mountain permafrost probability mapping using the BTS method in two climatically dissimilar locations, northwest Canada. Canadian Journal of Earth Sciences , 45: 433–455. Google Scholar


J. Brown , O. J. Ferrians Jr , J. A. Heginbottom , and E. S. Melnikov , 1997: Circum-arctic Map of Permafrost and Ground-Ice Conditions. United States Geological Survey MAP CP-45. Google Scholar


R. J. E. Brown , and T. L. Pewe , 1973: Distribution of permafrost in North America and its relationship to the environment, 1962–73— A review. In Permafrost—the North American Contribution to the Second International Conference, Yakutsk, Siberia. Washington, D.C.: National Academy of Sciences, 71–100. Google Scholar


K. Budge , J. Leif eld , E. Hiltbrunner , and J. Führer . 2011: Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times. Biogeosciences , 8: 1911–1923. Google Scholar


C. R. Burn , 1994: Permafrost, tectonics, and past and future regional climate change, Yukon and adjacent Northwest Territories. Canadian Journal of Earth Sciences , 31: 182–191. Google Scholar


S. F. Burns , 1980: Alpine Soil Distribution and Development, Indian Peaks, Colorado Front Range. Ph.D. thesis, Department of Geological Sciences, University of Colorado, Boulder (Dissertation Abstract 81–13948). Google Scholar


S. F. Bums, 1990: Alpine Spodosols: Cryaquods, Cryohumods, Cryorthods, and Placaquods above treeline. In J. M. Kimble , and R. D. Yeck (eds.), Proceedings of the Fifth International Correlation Meeting (ISCOM): Characterization, Classification, and Utilization of Spodosols. Lincoln, Nebraska: USDA Soil Conservation Service, 46–62. Google Scholar


N. Caine , 2010: Recent hydrologic change in a Colorado alpine basin: an indicator of permafrost thaw? Annals of Glaciology , 51:130–134. Google Scholar


L. Celi , F. Rosso , M. Freppaz , A. Agnelli , and E. Zanini , 2010: Soil organic matter characteristics in sporadic permafrost-affected environment (Creux du Van, Switzerland). Arctic, Antarctic, and Alpine Research , 42: 1–8. Google Scholar


G. D. Cheng , 2005: Permafrost studies in the Qinghai-Tibet Plateau for road construction. Journal of Cold Regions Engineering , 19: 19–29. Google Scholar


A. P. Chevychelov , and K. A. Volotovskii , 2001: Soils of alpine and subalpine vertical zones of the Tokinskii Stanovik Ridge. Eurasian Soil Science , 34: 704–709. Google Scholar


H. H. Christiansen , 2004: Meteorological control on interannual spatial and temporal variations in snow cover and ground thawing in two northeast Greenlandic Circumpolar-Active-layer-Monitoring (CALM) sites. Permafrost and Periglacial Processes , 15: 155–169. Google Scholar


H. H. Christiansen , C. Sigsgaard , O. Humlum , M. Rasch , and B. U. Hansen , 2008: Permafrost and periglacial geomorphology at Zackenberg. Advances in Ecological Research , 40: 151–174. Google Scholar


H. H. Christiansen , B. Etzelmuller , K. Isaksen , H. Juliussen , H. Farbrot , O. Humlum , M. Johansson , T. Ingeman-Nielsen , L. Kristensen , J. Hjort , P. Holmlund , A. B. K. Sannel , C. Sigsgaard , H. J. Åkerman , N. Foged , L. H. Blikra , M. A. Pernosky , and R. S. Ødegård , 2010: The thermal state of permafrost in the Nordic area during the International Polar year 2007–2009. Permafrost and Periglacial Processes , 21: 156–181. Google Scholar


D. Dahms , F. Favilli , R. Krebs , and M. Egli , 2012: Soil weathering and accumulation rates of oxalate-extractable phases derived from alpine chronosequences of up to 1 Ma in age. Geomorphology, 151–152: 99–113. Google Scholar


R. G. Darmody, C. E. Thorn , J. C. Dixon , and P. Schlyter , 2000: Soils and landscapes of Kärkevagge, Swedish Lapland. Soil Science Society of America Journal , 64: 1455–1466. Google Scholar


R. G. Darmody , C. E. Thorn , P. Schlyter , and J. C. Dixon , 2004: Relationship of vegetation distribution to soil properties in Kärkevagge, Swedish Lapland. Arctic, Antarctic, and Alpine Research , 36: 21–32. Google Scholar


R. G. Darmody , C. E. Allen , and C. E. Thorn , 2005: Soil topochronosequences at Storbreen, Jotunheimen, Norway. Soil Science Society of America Journal , 69: 1275–1287. Google Scholar


C. Dörfer , P. Kühn , F. Baumann , J.-S He ., and T. Schölten , 2013: Soil organic carbon pools and stocks in permafrost-affected soils on the Tibetan Plateau. PloS One , 8: e57024. Scholar


A. A. Dymov , E. V. Zhangurov , and V. V. Startsev , 2013: Soils of the northern part of the subpolar Urals: Morphology, physicochemical properties, and carbon and nitrogen pools. Eurasian Soil Science , 46: 459–467. Google Scholar


M. Egli , P. Fitze , and A. Mirabella , 2001: Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swiss alpine environments. Catena , 45: 19–47. Google Scholar


M. Egli , A. Mirabella , G. Sartori , and P. Fitze , 2003: Weathering rates as a function of climate: results from a climosequence of the Val Genova (Trentino, Italian Alps). Geoderma , 111: 99–121. Google Scholar


M. Egli , A. Mirabella , G. Sartori , R. Zanelli , and S. Bischof , 2006: Effect of north and south exposure on weathering rates and clay mineral formation in alpine soils. Catena , 67: 155–174. Google Scholar


B. Etzelmüller , and R. Frauenfelder , 2009: Factors controlling the distribution of mountain permafrost in the Northern Hemisphere and their influence on sediment transfer. Arctic, Antarctic, and Alpine Research , 41:48–58. Google Scholar


EtzelmüllerB. , H. Farbrot , A. Gudmundsson , O. Humlum , O. E. Tveito , and H. Björnsson , 2007: The regional distribution of mountain permafrost in Iceland. Permafrost and Periglacial Processes , 18: 185–199. Google Scholar


T. Feuillet , 2011: Statistical analyses of active patterned ground occurrence in the Taillon Massif (Pyrénées, France/Spain). Permafrost and Periglacial Processes , 22: 228–238. Google Scholar


M. Fieldes , and K. W. Perrott , 1966: The nature of allophone in soils. III. Rapid field and laboratory test for allophone. New Zealand Journal of Science , 90: 623–629. Google Scholar


K. Fukui , 2003: Permafrost and surface movement of an active protalus rampart in the Kuranosuke Cirque, the northern Japanese Alps. In M. Phillips , S. Springer , and L. Arenson (eds.). Permafrost. Lisse, Netherlands: Swets & Zeitlinger, 265–270. Google Scholar


K. Fukui , Y. Fujii , N. Mikhailov , O. Ostanin , and G. Iwahana , 2007: The lower limit of mountain permafrost in the Russian Altai Mountains. Permafrost and Periglacial Processes , 18: 129–136. Google Scholar


J. Garcia-Pausas , P. Casals , L. Camarero , C. Huguet , M.-T Sebastià, R. Thompson , and J. Romanyà , 2007: Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography. Biogeochemistry , 82: 279–289. Google Scholar


A. P. Gorbunov , 1978: Permafrost investigations in high-mountain regions. Arctic and Alpine Research , 10: 283–294. Google Scholar


L. A. Grishina , V. G. Onipchenko , M. I. Makarov , and V. A. Vanyasin , 1993: Changes in properties of mountain-meadow alpine soils of the northwestern Caucasus under different ecological conditions. Eurasian Soil Science , 25: 5–12. Google Scholar


S. Gruber , 2012: Derivation and analysis of a high-resolution estimate of global permafrost zonation. The Cryosphere , 6: 221–233. Google Scholar


S. Gruber , and M. Hoelzle , 2001: Statistical modelling of mountain permafrost distribution: local calibration and incorporation of remote sensed data. Permafrost and Periglacial Processes , 12: 69–77. Google Scholar


M. Guglielmin , and N. Cannone , 2011: A permafrost warming in a cooling Antarctica? Climatic Change , 111:177–195. Scholar


W. Haeberli , C. Guodong , A. P. Gorbunov , and S. A. Harris , 1993: Mountain permafrost and climate change. Permafrost and Periglacial Processes , 4: 165–174. Google Scholar


C. Harris , L. U. Arenson , H. H. Christiansen , B. Etzelmüller , R. Frauenfelder , S. Gruber , W. Haeberli , C. Hauck , M. Hölzle, O. Humlum , K. Isaksen , A. Kääb , M. A. Kem-Lütschg , M. Lehning , N. Matsuoka , J. B. Murton , J. Nötzli , M. Phillips , N. Ross , M. Seppälä , S. M. Springman , and D. Vonder Mühll , 2009: Permafrost and climate in Europe: monitoring and modeling thermal, geomorphological and geotechnical responses. Earth-Science Reviews , 92: 117–171. Google Scholar


S. A. Harris , 1986: Permafrost distribution, zonation and stability along the eastern ranges of the Cordillera of North America. Arctic , 39: 29–38. Google Scholar


S. A. Harris , and R. J. E. Brown , 1982: Permafrost distribution along the Rocky Mountains in Alberta. In Proceedings of the Fourth Canadian Permafrost Conference. Ottawa: National Research Council of Canada. 59–67. Google Scholar


J. Hort , and M. Luoto , 2009: Interaction of geomorphic and ecologie features across altitudinal zones in a subarctic landscape. Geomorphology , 112: 324–333. Google Scholar


K. Isaksen , P. Holmlund , J. L. Sollid , and C. Harris , 2001: Three deep alpine-permafrost boreholes in Svalbard and Scandinavia. Permafrost and Periglacial Processes , 12: 13–25. Google Scholar


M. N. Ivanov , and E. V. Medvedeva , 2012: Polar Urals and periglacial geomorphology TICOP Excursion Guidebook. Tyumen, Russia: Pechatnik. Google Scholar


IUSS Working Group WRB, 2006. World Reference Base for Soil Resources. Rome: FAO, World Soil Resources Report Number 103. Google Scholar


B. H. Jakobsen , 1988: Soil formation on the Peninsula Tugtuligssuaq, Melville Bay, North West Greenland. Danish Journal of Geography , 88: 86–93. Google Scholar


J. R. Janke , 2005: The occurrence of alpine permafrost in the Front Range of Colorado. Geomorphology , 67: 375–389. Google Scholar


J. R. Janke , M. W. Williams , and A. Evans Jr ., 2012: A comparison of permafrost prediction models along a section of Trail Ridge Road, Rocky Mountain National Park, Colorado, USA. Geomorphology , 138: 111–120. Google Scholar


E. G. Jobbágy , and R. B. Jackson , 2000: The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications , 10: 423–436. Google Scholar


P. L. Johnson , and W. D. Billings , 1962: The alpine vegetation of the Beartooth Plateau in relation to cryopedogenic processes and patterns. Ecological Monographs , 32: 105–135. Google Scholar


A. Julián , and J. Chueca , 2007: Permafrost distribution from BTS measurements (Sierra de Telera, central Pyrenees, Spain): Assessing the importance of solar radiation in a mid-level shaded mountainous area. Permafrost and Periglacial Processes , 18: 137–149. Google Scholar


L. A. Kann , 1965: High-mountain soils of the western Pamirs. Soviet Soil Science , 9: 1028–1036. Google Scholar


C. Kabala , and J. Zapart , 2012: Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma, 175–176: 9–20. Google Scholar


N. A. Karavayeva , 1958: High-mountain soils of the eastern Sayans. Soviet Soil Science , 4: 397–401. Google Scholar


L. King , 1986: Zonation and ecology of high mountain permafrost in Scandinavia. Geografiska Annaler , 68A: 131–139. Google Scholar


L. J. Knapik , G. W. Scotter , and W. W. Pettapiece , 1973: Alpine soil and plant community relationships of the Sunshine Area, Banff National Park. Arctic and Alpine Research , 5: A161–A170. Google Scholar


Y. N. Krasnoshchekov , 2010: Soils and the soil cover of mountainous tundra and forest landscapes in the central Khangai of Mongolia. Eurasian Soil Science , 43: 117–126. Google Scholar


C. Küfmann , 2008: Are Cambisols in alpine karst autochthonous or eolian in origin? Arctic, Antarctic, and Alpine Research , 40: 506–518. Google Scholar


M. Leopold , J. Voelkel , D. Dethier , M. Williams , and N. Caine , 2010: Mountain permafrost—a valid archive to study climate change? Examples from the Rocky Mountains Front Range of Colorado, USA. Nova Acta Leopoldina , 112: 281–289. Google Scholar


S. N. Lessovaia , S. V. Goryachkin , R. V. Desyatkin , and M. V. Okoneshnikova , 2013: Pedoweathering and mineralogical change in Cryosols in an ultra-continental climate (central Yakutia, Russia). Acta Geodynamica et Geomaterialia , 10: 465–473. Google Scholar


A. G. Lewkowicz , and M. Ednie , 2004: Probability mapping of mountain permafrost using the BTS method. Wolf Creek, Yukon Territory, Canada. Permafrost and Periglacial Processes , 15: 67–80. Google Scholar


S. D. Li , and G. D. Chang , 1996: Map of frozen ground on Qinghai-Xizang Plateau. Lanzhou, China: Gansu Culture Press. Google Scholar


R. Li , L. Zhao , Y. J. Ding , T.-H. Wu , Y. Xiao , E. Du , G.-Y. Liu , and Y.-P. Qiao , 2012: Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chinese Science Bulletin , 57: 4609–4616. Google Scholar


K. S. Lilleøren , and B. Etzelmüller , 2011: A regional inventory of rock glaciers and ice-cored moraines in Norway. Geografiska Annaler , 93A: 175–191. Google Scholar


W. C. Mahaney , V. Kalm , B. Kapran , M. W. Milner , and R. G. V. Hancock , 2009: A soil chronosequence in Late Glacial and Neoglacial moraines, Humboldt Glacier, northwestern Venezuelan Andes. Geomorphology , 109: 236–245. Google Scholar


S. S. Marchenko , A. P. Gorbunov , and V. E. Romanovsky , 2007: Permafrost warming in the Tien Shan Mountains, central Asia. Global and Planetary Change , 56: 311–327. Google Scholar


T. Matsui , N. Kondo, and Y. Yano , 1971: A clay mineralogical aspect of the vertical zonality on the Japan South Alps. Soil Science and Plant Nutrition , 17: 199–209. Google Scholar


G. Mazhitova , G. Maikova , O. Chestnykh , and D. Zamolodchikov , 2004: Active-layer spatial and temporal variability at European Russian Circumpolar-Active-Layer-Monitoring (CALM) sites. Permafrost and Periglacial Processes , 15: 123–139. Google Scholar


D. C. Miller , and P. W. Birkeland , 1992: Soil catena variation along an alpine climatic transect, northern Peruvian Andes. Geodenna , 55: 211–223. Google Scholar


E. N. Molchanov , 2008: Mountainous meadow Chernozem-like soils of high mountains in the North Caucasus region. Eurasian Soil Science , 41: 1268–1281. Google Scholar


J. S. Munroe , 2007: Properties of alpine soils associated with well-developed sorted polygons in the Uinta Mountains, Utah, U.S.A. Arctic, Antarctic, and Alpine Research , 39: 578–591. Google Scholar


J. S. Munroe , 2008: Alpine soils on Mount Mansfield, Vermont, USA: pedology, history, and intraregional comparison. Soil Science Society of America Journal , 72: 524–533. Google Scholar


J. S. Munroe , and J. G. Bockheim , 2001: Soil development in low-arctic tundra of the northern Brooks Range, Alaska, U.S.A. Arctic, Antarctic, and Alpine Research , 33: 78–87. Google Scholar


E. Z. Mutter , and M. Phillips , 2012: Active layer characteristics at ten borehole sites in alpine permafrost terrain, Switzerland. Permafrost and Periglacial Processes , 23: 138–151. Google Scholar


A. Niessen , P. van Horssen , and E. A. Koster , 1992: Altitudinal zonation of selected geomorphological phenomena in an alpine periglacial area (Abisko, northern Sweden). Geografiska Annaler , 74A: 183–196. Google Scholar


T. J. Nimios , and R. C. McConnell , 1965: Alpine soils in Montana. Soil Science , 99: 310–321. Google Scholar


T. Ohtsuka , M. Hirota , X. Zhang , A. Shimono , Y. Senga , M. Du , S. Yonemura , S. Kawashima , and Y. Tang , 2008: Soil organic carbon pools in alpine to nival zones along an altitudinal gradient (4400–5300 m) on the Tibetan Plateau. Polar Science , 2: 277–285. Google Scholar


T. E. Osterkamp , 2007: Characteristics of the recent warming of permafrost in Alaska. Journal of Geophysical Research: Earth Surface , 112: F02S02, Scholar


Q. Pang , G. Cheng , S. Li , and W. Zhang , 2009: Active layer thickness calculation over the Qinghai-Tibet Plateau. Cold Regions Science and Technology , 57: 23–28. Google Scholar


R. L. Parfitt , M. Russell , and G. E. Orbell , 1983: Weathering sequence of soils from volcanic ash involving allophone and halloysite, New Zealand. Geodenna , 29: 41–57. Google Scholar


R. J. Parkinson , and A. F. Gellatly , 1991: Soil formation on Holocene moraines in the Cirque de Troumouse, Pyrenees. Pirineos , 138: 69–82. Google Scholar


S. Pawluk , and R. Brewer , 1975: Micromorphological, mineralogical, and chemical characteristics of some alpine soils and their genetic implications. Canadian Journal of Soil Science , 55: 415–437. Google Scholar


J. Pelí , 1973: Vertical soil zonality in the Carpathians of Czechoslovakia. Geoderma , 9: 193–211. Google Scholar


T. L. Péwé , 1983: Alpine permafrost in the contiguous United States: a review. Arctic and Alpine Research , 15: 145–156. Google Scholar


M. Pfeiffer , C. Mascayano , and R. Aburto , 2010: Soils of Chilean Patagonia in glacial and periglacial environments. Eurasian Soil Science , 43: 1430–1438. Google Scholar


J. Retzer , 1974: Alpine soils. In J. D. Ives , and R. G. Barry (eds.), Arctic and Alpine Environments. London: Methuen, 771–802. Google Scholar


Y.V. Rubilin , and M. Dzhumagulov , 1977: Humus and its composition in some subalpine and alpine soils of Kirghizia. Eurasian Soil Science , 6: 264–272. Google Scholar


L. Ruiz , and D. Trombotto , 2012: Mountain permafrost distribution in the Andes of Chubut (Argentina) based on a statistical model. In Proceedings, Tenth International Conference on Permafrost (TICOP), Salekhard, Russia, 365–370. Google Scholar


E. A. G. Schuur , B. W. Abbott , W. B. Bowden , V. Brovkin , P. Camill , J. G. Canadell , J. P. Chanton , F. S. Chapin III , T. R. Christensen , P. Ciais , B. T. Crosby , C. I. Czimczik , G. Grosse , J. Harden , D. J. Hayes , G. Hugelius , J. D. Jastrow , J. B. Jones , T. Kleinen , C. D. Koven , G. Krinner , P. Kuhry , D. M. Lawrence , A. D. McGuire , S. M. Natali , J. A. O'Donnell , C. L. Ping , W. J. Riley , A. Rinke , V. E. Romanovsky , A. B. K. Sannel , C. Schädel , K. Schaefer , J. Sky , Z. M. Subin , C. Tarnocai , M. R. Turetsky , M. P. Waldrop , K. M. Walter Anthony , K. P. Wickland , C. J. Wilson , and S. A. Zimov , 2013: Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change , 119: 359–374. Google Scholar


E. Serrano , R. Agudo , R. Delaloye , and J. J. González-Tmeba , 2001: Permafrost distribution in the Posets massif, central Pyrenees. Norwegian Journal of Geography , 55: 245–252. Google Scholar


N. Sharkhuu , 2003: Recent changes in the permafrost of Mongolia. In M. Phillips , S. Springman , and L. Arenson (eds.), Pennafrost. Lisse: Swets & Zeitlinger, 1029–1034. Google Scholar


A. Sharkhuu , N. Sharkhuu , B. Etzelmüller , E. S. F. Heggem , F. E. Nelson , N. L. Shiklomanov , C. E. Goulder , and J. Brown , 2007: Permafrost monitoring in the Hovsgol mountain region, Mongolia. Journal of Geophysical Research-Earth Surface, 112: Scholar


M. Skiba , 2007: Clay mineral formation during podzolization in an alpine environment of the Tatra Mountains, Poland. Clays and Clay Minerals , 55: 618–634. Google Scholar


C. A. S Smith , M. Clark , G. Broil , C. L. Ping , J. M. Kimble , and G. Luo , 1999: Characterization of selected soils from the Lhasa region of Qinghai-Xizang Plateau, SW China. Pennafrost and Periglacial Processes , 10: 211–222. Google Scholar


J. I. Sneddon , L. M. Lavkulich , and L. Farstad , 1972: The morphology and genesis of some alpine soils in British Columbia, Canada: I. Morphology, classification, and genesis. Soil Science Society of America Proceedings , 36: 101–104. Google Scholar


Soil Survey Division, 2013a: Soil Classification Database. USDA— Natural Resources Conservation Service, available online at Scholar


Soil Survey Division. 2013b: Official Soil Series Descriptions. USDA—Natural Resources Conservation Service, available online at Scholar


Soil Survey Division, 2013c: Soil Laboratory Data. USDA—Natural Resources Conservation Service, available online at Scholar


Soil Survey Staff, 1999: Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Second edition. Washington, D.C.: U.S. Government Printing Office, United States Department of Agriculture, Natural Resources Conservation Service, Agricultural Handbook Number 436. Google Scholar


Soil Survey Staff, 2010: Keys to Soil Taxonomy. 11th edition. Lincoln, Nebraska: United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center. Google Scholar


T. Sone , N. Takahashi , and M. Fukuda , 1988: Alpine permafrost occurrence at Mt. Taisetsu, central Hokkaido, in northern Japan. In Proceedings of the Fifth International Conference on Permafrost. Trondheim, Norway: Tapir Publishers, 253–258. Google Scholar


C. Tarnocai , F. M. Nixon . and L. Kutny , 2004: Circumpolar-Active-Layer-Monitoring (CALM) sites in the Mackenzie Valley, northwestern Canada. Pennafrost and Periglacial Processes , 15: 141–153. Google Scholar


C. Tarnocai , J. G. Canadell , E. A. G. Schuur , P. Kuhry , G. Mazhitova , and S. Zimov , 2009: Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23: Scholar


T. E. Thorhallsdottir , 1983: The ecology of permafrost areas in central Iceland and the potential effects of impoundment. In Proceedings of the Fourth International Conference on Permafrost, Fairbanks, Alaska. Washington, D.C.: National Academy of Sciences Press, 1251–1256. Google Scholar


P. J. Tonkin , and L. R. Basher , 2001: Soil chronosequences in subalpine superhumid Cropp Basin, western Southern Alps, New Zealand. New Zealand Journal of Geology and Geophysics , 44: 37–15. Google Scholar


D. Trombotto , 2000: Survey of cryogenic processes, periglacial forms and permafrost conditions in South America. Revista do Instituto Geológico, São Paulo , 21: 33–55. Google Scholar


D. Trombotto , and E. Borzotta , 2009: Indicators of present global warming through changes in active-layer thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, central Andes of Mendoza, Argentina. Cold Regions Science and Technology , 55: 321–330. Google Scholar


J. Turner , R. A. Bindschadler , P. Convey , G. Di Prisco , E. Fahrbach , J. Gutt , D. A. Hodgson , P. A. Mayewski , and C. P. Summerhayes , 2009: Antarctic Climate Change and the Environment. Cambridge, UK: Scientific Committee on Antarctic Research. Google Scholar


F. C. Ugolini , and J. C. F. Tedrow , 1963: Soils of the Brooks Range: 3. Rendzina of the Arctic. Soil Science , 96: 121–127. Google Scholar


F. C. Ugolini , J. C. F. Tedrow , and C. L. Grant , 1963: Soils of the northern Brooks Range, Alaska: 2. Soils derived from black shale. Soil Science , 95: 115–123. Google Scholar


P. Urdea , 1998: Rock glaciers and permafrost reconstruction in the southern Carpathian Mountains, Romania. In Proceedings, Seventh International Conference on Permafrost, Yellowknife, Canada. Collection Nordicana , 55: 1063–1069. Google Scholar


R. Van Everdingen (ed.), 1998: Multi-language glossary of permafrost and related ground-ice terms. Boulder, Colorado: National Snow and Ice Data Center. Google Scholar


A. L. Van Ryswyk , and R. Okazaki , 1979: Genesis and classification of modal subalpine and alpine soil pedons of south-central British Columbia, Canada. Arctic and Alpine Research , 11: 53–67. Google Scholar


G. Wang , Y. Li , Y. Wang , and Q. Wu , 2008: Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China. Geoderma , 143: 143–152. Google Scholar


G. Wang , J. Qian , G. Cheng , and Y. Lai , 2002: Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. The Science of the Total Environment , 291: 207–217. Google Scholar


Q. Wu , T. Zhang , and Y. Liu , 2010: Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Global and Planetary Change , 72: 32–38. Google Scholar


X. Wu , L. Zhao , M. Chen , H. Fang , G. Yue , J. Chen , Q. Pang , Z. Wang , and Y. Ding , 2012: Soil organic carbon and its relationship to vegetation communities and soil properties across permafrost areas of the central western Qinghai-Tibet Plateau, China. Permafrost and Periglacial Processes , 23: 162–169. Google Scholar


Y. Yang , J. Fang , C. Ji , W. Ma , S. Su , and Z. Tang , 2008: Soil inorganic carbon stock in the Tibetan alpine grasslands. Global Biogeochemical Cycles , 24: GB4022, Scholar


S. Zhao , W. Cheng , C. Shou , X. Chen , and J. Chen , 2012: Simulation of decadal alpine permafrost distributions in the Qilian Mountains over the past 50 years by using logistic regression model. Cold Regions Science and Technology , 73: 32–40. Google Scholar


B. Zollinger , C. Alewell , C. Kneisel , K. Meusburger , H. Gartner , D. Brandová , S. Ivy-Ochs , M. W. I. Schmidt , and M. Egli , 2013: Effect of permafrost on the formation of soil organic carbon pools and their physical-chemical properties in the eastern Swiss Alps. Catena , 110: 70–85. Google Scholar
© 2014 Regents of the University of Colorado
James G. Bockheim and Jeffrey S. Munroe "Organic Carbon Pools and Genesis of Alpine Soils with Permafrost: A Review," Arctic, Antarctic, and Alpine Research 46(4), 987-1006, (1 November 2014).
Accepted: 1 June 2014; Published: 1 November 2014

Back to Top