Analyses of long-term data indicate that human-caused climatic changes are affecting bird phenology in directions consistent with theoretical predictions. Here, we report on recent trends in the timing of spring arrival and egg laying found within a western European Pied Flycatcher Ficedula hypoleuca population. Mean egg laying date has advanced over the past 20 years in this population. The advancement in egg laying date was stronger than the advancement of spring arrival, suggesting that Pied Flycatchers are changing these stages of their annual cycle at different rates. It could be shown that selection for earlier breeding had increased. Hence, the observed adjustment in laying date did not match the advancement of spring. Our findings raise general questions about the adaptability of migratory birds to rapid environmental changes. Adaptive advancement of reproduction in response to increasing spring temperatures and to the concomitant advancement of food supply could be held back, because annual breeding and migration cycles are controlled primarily by endogenous rhythms and photoperiodic cues which do not relate to temperature. Migrants may have several options for arriving earlier on the breeding grounds, including an increase in migration speed, earlier departure from the wintering area or a shortening of migration distance. Changes in migratory behaviour could be accomplished either by phenotypic plasticity or by selection on different genotypes. Although descriptive field data provide compelling evidence for changes in, and possible constraints on, the timing of breeding and migration, their explanatory power in predicting the limits of adaptation remains restricted. We review recent experimental approaches, which explicitly test the relative roles of genetic versus environmental factors in the adaptation of life-cycle timing to global environmental changes.
How to translate text using browser tools
1 December 2002
Predicting Life-Cycle Adaptation of Migratory Birds to Global Climate Change
Timothy Coppack,
Christiaan Both
A. J. Baker
,
T. Piersma
&
L. Rosenmeier
1994. Unraveling the intraspecific phylogeography of Knots Calidris canutas: A progress report on the search for genetic markers. J. Orn. 135: 599–608. Google Scholar
F. Bergmann
1998. Die Wegzugphänologie von Kleinvögeln in Mitteleuropa — Zugzeiten, Zugmuster, Abhängigkeit von der Witterung und langfristige Trends im Zeitpunkt des Durchzugs. PhD-thesis, University of Constance, Constance. Google Scholar
P. Berthold
1991. Patterns of avian migration in light of current global ‘greenhouse’ effects: a central European perspective. Proc. Int. Orn. Congr. 20: 780–786. Google Scholar
P. Berthold
1998. Vogelwelt und Klima: gegenwärtige Veränderungen. Naturwiss. Rundsch. 51: 337–346. Google Scholar
P. Berthold
2001a. Vogelzug: eine neue Theorie zur Evolution, Steuerung und Anpassungsfähigkeit des Zugverhaltens. J. Orn. 142 Suppl. 1: 148–159. Google Scholar
P. Berthold
&
F. Pulido
1994. Heritability of migratory activity in a natural bird population. Proc. R. Soc. Lond., B. 257: 311–315. Google Scholar
P. Berthold
,
W. Fiedler
,
R. Schlenker
&
U. Querner
1998. 25-year study of the population development of Central European songbirds: a general decline, most evident in long-distance migrants. Naturwiss. 85: 350–353. Google Scholar
E. Bezzel
&
W. Jetz
1995. Verschiebung der Wegzugperiode bei der Mönchsgrasmücke (Sylvia atricapilla) 1966–1993 — Reaktion auf die Klimaerwärmung? J. Orn. 136: 83–87. Google Scholar
C. Both
&
M.E. Visser
2001. Adjustment to climate change is constrained by arrival date in a long distance migrant bird. Nature 411: 296–298. Google Scholar
N.L. Bradley
,
A.C. Leopold
,
J. Ross
&
W. Huffaker
1999. Phonological changes reflect climate change in Wisconsin. Proc. Natl. Acad. Sci. USA 96: 9701–9704. Google Scholar
C.R. Brown
&
M.B. Brown
2000. Weather-mediated natural selection on arrival time in cliff swallows (Petrochelidon pyrrhonota). Behav. Ecol. Sociobiol. 47: 339–345. Google Scholar
J.L. Brown
,
S-H. Li
&
N. Bhagabati
1999. Long-term trend toward earlier breeding in an American bird: a response to global warming? Proc. Natl. Acad. Sci. USA 96: 5565–5569. Google Scholar
T. Coppack
,
F. Pulido
&
P. Berthold
2001. Photoperiodic response to early hatching in a migratory bird species. Oecologia 128: 181–186. Google Scholar
T. Coppack
, F. Pulido
, M. Czisch
, D.P. Auer
& P. Berthold
in press. Photoperiodic response may facilitate adaptation to climatic change in long-distance migratory birds. Proc. R. Soc. Lond. B (Suppl.) DOI 10.1098/TSBL. 2003.0005. Google Scholar
H.Q.P. Crick
&
T.H. Sparks
1999. Climate change related to egg-laying trends. Nature 399: 423–424. Google Scholar
H.Q.P. Crick
C. Dudley
,
D.E. Glue
&
D.L. Thomson
1997. UK birds are laying eggs earlier. Nature 388: 526 Google Scholar
T.J. Crowley
2000. Causes of climate change over the past 1000 years. Science 289: 270–277. Google Scholar
S. Daan
,
C. Dijkstra
,
R.H. Drent
&
T. Meijer
1988. Food supply and the annual timing of reproduction. Proc. 19th Int. Orn. Congr., Ottawa 1986: 392–407. Google Scholar
P.O. Dunn
&
D.W. Winkler
1999. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. Lond., B 266: 2487–2490. Google Scholar
M. Enquist
&
J. Petterson
1986. The timing of migration in 104 bird species at Ottenby — an analysis based on 39 years trapping data. Spec. Rep. Ottenby Bird Observ. 8: 1–248. Google Scholar
M. Enquist
& J. Petterson
1986. Flyttningens tidsmässiga förlopp hos 104 fågelarter vid Ottenby — en analys baserad på 39 års fångstdata. Rapport från Ottenby fågelstation nr 8. Google Scholar
B.J. Ens
,
T. Piersma
&
J.M. Tinbergen
1994. Towards predictive models of bird migration schedules: theoretical and empirical bottlenecks. NIOZ-Rapport 1994–5, Netherlands Institute for Sea Research, Texel. Google Scholar
M.C. Forchhammer
,
E. Post
&
N.C. Stenseth
1998. Breeding phenology and climate…. Nature 391: 29–30 Google Scholar
W. Gatter
1992. Zugzeiten und Zugmuster im Herbst: Einfluss des Treibhauseffekts auf den Vogelzug? J. Orn. 133: 427–436. Google Scholar
E. Gwinner
1987. Annual rhythms of gonadal size, migratory disposition and molt in Garden Warblers Sylvia borin exposed in winter to an equatorial or a southern hemisphere photoperiod. Ornis Scand. 18: 251–256. Google Scholar
E. Gwinner
1989. Einfluss der Photoperiode auf das circannuale System des Halsbandschnäppers (Ficedula albicollis) und des Trauerschnäppers (F. hypoleuca). J. Orn. 130: 1–13. Google Scholar
E. Gwinner
1996. Circannual clocks in avian reproduction and migration. Ibis 138: 47–63. Google Scholar
J.T. Houghton
, Y. Ding
, D.J. Griggs
, M. Noguer
, P.J. van der Linden
& D. Xiaosu
(eds) 2001. Climate change 2001: The scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge Univ. Press, Cambridge. Google Scholar
L. Hughes
2000. Biological consequences of global warming: is the signal already apparent? TREE 15: 56–61. Google Scholar
O. Hüppop
&
K. Hüppop
2003. North Atlantic Oscillation and timing of spring migration in birds. Proc. R. Soc. Lond. B, 270, 233–240. Google Scholar
J.D. Jacobs
&
J.C. Wingfield
2000. Endocrine control of life-cycle stages: a constraint on response to the environment? Condor 102: 35–51. Google Scholar
D. Jenkins
&
A. Watson
2000. Dates of first arrival and song of birds during 1974–99 in mid-Deeside, Scotland. Bird Study 47: 249–251. Google Scholar
C.F. Mason
1995. Long-term trends in the arrival dates of spring migrants. Bird Study 42: 182–189. Google Scholar
R.H. McCleery
&
C.M. Perrins
1998. Temperature and egg-laying trends. Nature 391: 30–31. Google Scholar
A.P. Møller
2001. Heritability of arrival date in a migratory bird. Proc. R. Soc. Lond., B 268: 203–206. Google Scholar
D. Moritz
1993. Long-term monitoring of Palaearctic-African migrants at Helgoland/German bight, North Sea. Proc. Pan-Afr. Orn. Congr. 8: 579–586. Google Scholar
G. Ottersen
,
B. Planque
,
A. Belgrano
,
E. Post
,
P.C. Reid
,
N.C. Stenseth
2001. Ecological effects of the North Atlantic oscillation. Oecologia 128: 1–14. Google Scholar
J. Potti
1998. Arrival time from spring migration in male Pied Flycatchers: individual consistency and familial resemblance. Condor 100: 702–708. Google Scholar
F. Pulido
&
P. Berthold
1998. The microevolution of migratory behaviour in the blackcap: effects of genetic covariances on evolutionary trajectories. In:
F. Spina
& A. Grattarola
(eds) Proceedings of the 1st Meeting of the European Ornithologists' Union, Bologna. Biol. Conserv. Fauna 102: 206–211. Google Scholar
F. Pulido
,
P. Berthold
&
A.J. van Noordwijk
1996. Frequency of migrants and migratory activity are genetically correlated in a bird population: evolutionary implications. Proc. Natl. Acad. Sci. USA 93: 14642–14647. Google Scholar
F. Pulido
,
P. Berthold
,
G. Mohr
&
U. Querner U
2001. Heritability of the timing of autumn migration in a natural bird population. Proc. R. Soc. Lond., B. 268: 953–959. Google Scholar
C.S. Robbins
,
J.R. Sauer
,
R. Greenberg
&
S. Droeger
1989. Population declines in North American birds that migrate to the neotropics. Proc. Natl. Acad. Sci. USA 86: 7658–7622. Google Scholar
P. Siikamäki
1998. Limitation of reproductive success by food availability and breeding time in Pied Flycatchers. Ecology 79: 1789–1796. Google Scholar
L.V. Sokolov
&
V.A. Payevsky
1998. Spring temperatures influence year-to-year variations in the breeding phenology of passerines on the Courish Spit, eastern Baltic. Avian Ecol. Behav. 1: 22–36. Google Scholar
L.V. Sokolov
,
M.Y. Markovets
,
A.P. Shapoval
&
Y.G. Morozov
1998. Long-term trends in the timing of spring migration of passerines on the Courish Spit of the Baltic Sea. Avian Ecol. Behav. 1: 1–21. Google Scholar
T.H. Sparks
1999. Phenology and the changing pattern of bird migration in Britain. Int. J. Biometeorol. 42: 134–138. Google Scholar
W.J. Sutherland
1998. Evidence for flexibility and constraint in migration systems. J. Avian Biol. 29: 441–446. Google Scholar
C.D. Thomas
&
J.J. Lennon
1999. Birds extend their ranges northwards. Nature 399: 213. Google Scholar
P. Tryjanowski
,
S. Kuzniak
&
T.H. Sparks
2002. Earlier arrival of some farmland migrants in western Poland. Ibis 144: 62–68. Google Scholar
A.J. Van Noordwijk
,
R.H. McCleery
&
C.M. Perrins
1995. Selection for timing of great tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 64: 451–458. Google Scholar
N. Verboven
,
J.M. Tinbergen
,
S. Verhulst
2001. Food, reproductive success and multiple breeding in the Great Tit Parus major. Ardea 89: 387–406. Google Scholar
S. Verhuist
,
J.H. van Balen
&
J. M. Tinbergen
1995. Seasonal decline in reproductive success: variation in time or quality. Ecology 76: 2393–2403. Google Scholar
M. Visser
&
M.M. Lambrechts
1999. Information constraints in the timing of reproduction in temperate zone birds: great and blue tits. Proc. Int. Orn. Congr. 22: 249–264. Google Scholar
M.E. Visser
&
L.J.M. Holleman
2001. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. R. Soc. Lond. B 268: 289–294. Google Scholar
M.E. Visser
,
A.J. van Noordwijk
,
J.M. Tinbergen
&
C.M. Lessells
1998. Warmer springs lead to mistimed reproduction in Great Tits (Parus major). Proc. R. Soc. Lond. B 265: 1867–1870. Google Scholar
C. Vogel
&
D. Moritz
1995. Langjährige Änderungen von Zugzeiten auf Helgoland. J. ber. Inst. Vogelforsch. 2: 8–9. Google Scholar
M. Widmer
1999. Altitudinal variation of migratory traits in the Garden Warbler Sylvia borin. PhD-the-sis, University of Zurich, Zurich. Google Scholar
W. Winkel
&
H. Hudde
1997. Long-term trends in reproductive traits of tits (Parus major, P. caeruleus) and Pied Flycatchers Ficedula hypoleuca. J. Avian Biol. 28: 187–190. Google Scholar
<
Previous Article
|
Ardea
Vol. 55 • No. 1–2
December 1950
Vol. 55 • No. 1–2
December 1950
biological rhythms
climate change
Ficedula hypoleuca
migration
moult
photoperiod
reproduction