The myc family of transcriptional regulators carries out critical roles in the control of cellular proliferation, differentiation, apoptosis, and tumorigenesis. The B-myc gene is a recently identified myc family member that has not been well characterized. Previously, we have shown that B-Myc inhibits the ability of c-Myc to transform cells and can inhibit cellular proliferation. Because B-myc is primarily expressed in hormonally regulated tissues with predominant expression in the epididymis, we examined in greater detail B-myc expression in the epididymis to ultimately understand potential roles B-myc may play in this and other hormonally regulated tissues. Herein we demonstrate that, in contrast to c-myc, B-myc mRNA and protein expression are highly regionalized with expression predominantly in the proximal caput epididymal region. Furthermore, in situ and immunohistochemical analyses show that within the epididymis B-myc mRNA and protein are specifically expressed by the epithelial cells and that B-Myc protein is localized to both the nuclear and cytosolic compartments. Castration and hormone replacement studies further show that expression of the B-myc mRNA is highly dependent on the presence of androgens and testicular factors. Finally, mRNA turnover studies demonstrate that the B-myc mRNA is relatively unstable with a half-life of 3.5 h. Taken together, the highly restricted and regulated expression of the B-myc gene suggests it may play important regulatory roles in the epididymis and perhaps other hormonally regulated tissues.