In the present study, we examined downstream signaling events that followed exposure of cultured rat myometrial cells to platelet-derived growth factor (PDGF) and their effect on cell proliferation. PDGF-BB induced tyrosine phosphorylation of PDGF-β receptors and increased inositol trisphosphate production via the tyrosine phosphorylation of phospholipase (PL)C-γ1. PDGF-BB also increased cAMP synthesis. This increase was potentiated by forskolin and reduced by indomethacin, a cyclooxygenase inhibitor, reflecting a Gs protein-mediated process via prostaglandin biosynthesis. The prostaglandin produced by PDGF was characterized as prostacyclin (PGI2). PDGF-BB increased arachidonic acid (AA) release, which, similarly to cAMP accumulation, was abolished in the presence of AACOCF3, a cytosolic PLA2 inhibitor, and in the absence of Ca2 . U-73122, a potent inhibitor of PLC activity, blocked both the production of inositol phosphates and the AA release triggered by PDGF-BB. Extracellular signal-regulated kinases (ERKs) 1 and 2 are expressed in myometrial cells, and PDGF-BB selectively activated ERK2. PD98059, an inhibitor of the ERK-activating kinase, blocked PDGF-BB-mediated ERK2 activation, AA release, and cAMP production. The results demonstrate that PDGF-BB stimulated cAMP formation through both PLC activation and ERK-dependent AA release and PGI2 biosynthesis. PDGF-BB also increased cell proliferation and [3H]thymidine incorporation. This was abolished by PD98059, demonstrating that the ERK cascade is required for the mitogenic effect of PDGF-BB. Forskolin, which potentiated the cAMP response to PDGF-BB, attenuated both DNA synthesis and ERK activation triggered by PDGF-BB, suggesting the presence of a negative feedback regulation.
Translator Disclaimer
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.