Translator Disclaimer
1 February 2005 A Single-Chain Tetradomain Glycoprotein Hormone Analog Elicits Multiple Hormone Activities In Vivo
Author Affiliations +
Abstract

We previously demonstrated that genetically linking one or more of the glycoprotein hormone-specific β subunit genes to the common α subunit resulted in single-chain analogues that were bioactive in vitro. The ability of such large structures to bind their cognate receptors with high affinity supported the hypothesis that extensive flexibility exists between the ligand and receptor to establish a functional complex. To further characterize the extent of this conformational flexibility, we engineered a single-chain analogue that consists of sequentially linked thyroid-stimulating hormone (TSH) β, follicle-stimulating hormone (FSH) β, and chorionic gonadotropin (CG) β subunits to the α subunit and expressed this chimera in transfected CHO (Chinese hamster ovary) cells. Because the four subunits are genetically linked and expressed as a single-chain, this analogue presumably lacks significant native structural features of the individual heterodimers. However, it exhibited FSH, CG, and TSH activities in vitro. Here, we test whether this nonnative structure would be stable in vivo and thus biologically active. Using a variety of bioassay protocols, we demonstrate that the analogue elicits multihormone activities when injected in vivo. First, treatment with the analogue caused increases in ovarian and uterine weights and resulted in elevated serum estradiol. Second, the analogue-stimulated ovarian follicle growth and pharmacologically rescued in vivo FSH deficiency similar to recombinant human FSH or equine CG (eCG) as confirmed by induction of aromatase in the ovaries of FSHβ knockout mice. Third, in a superovulation protocol, when primed with eCG, the analogue elicited a dose-dependent ovulatory response comparable with that by native heterodimeric human CG. Finally, the analogue-stimulated thyroxin production in hypothyroid mice similar to the pituitary-derived human TSH standard. Based on these data, we conclude that a single-chain tetradomain glycoprotein hormone analogue, despite its presumed altered conformation, is stable and biologically active in vivo. Our results establish the permissiveness and conformational plasticity with which the glycoprotein hormones are recognized in vivo by their target cell receptors.

Vicenta Garcia-Campayo, Irving Boime, Xiaoping Ma, Dorit Daphna-Iken, and T. Rajendra Kumar "A Single-Chain Tetradomain Glycoprotein Hormone Analog Elicits Multiple Hormone Activities In Vivo," Biology of Reproduction 72(2), 301-308, (1 February 2005). https://doi.org/10.1095/biolreprod.104.031732
Received: 7 May 2004; Accepted: 1 September 2004; Published: 1 February 2005
JOURNAL ARTICLE
8 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top