Translator Disclaimer
1 January 2006 In Vivo Gene Transfer by Electroporation Allows Expression of a Fluorescent Transgene in Hamster Testis and Epididymal Sperm and Has No Adverse Effects upon Testicular Integrity or Sperm Quality
Author Affiliations +
Abstract

The study of gene function in testis and sperm has been greatly assisted by transgenic mouse models. Recently, an alternative way of expressing transgenes in mouse testis has been developed that uses electroporation to introduce transgenes into the male germ cells. This approach has been successfully used to transiently express reporter genes driven by constitutive and testis-specific promoters. It has been proposed as an alternative method for studying gene function in testis and sperm, and as a novel way to create transgenic animals. However, the low levels and transient nature of transgene expression that can be achieved using this technique have raised concerns about its practical usefulness. It has also not been demonstrated in mammals other than mice. In this study, we show for the first time that in vivo gene transfer using electroporation can be used to express a fluorescent transgene in the testis of a mammal other than mice, the Syrian golden hamster. Significantly, for the first time we demonstrate expression of a transgene in epididymal sperm using this approach. We show that expression of the transgene can be detected in sperm for as long as 60 days following gene transfer. Finally, we provide the first systematic demonstration that this technique does not lead to any significant long-term adverse effects on testicular integrity and sperm quality. This technique therefore offers a novel way to study gene function during fertilization in hamsters and may also have potential as a way of creating transgenic versions of this important model species.

Olivia Hibbitt, Kevin Coward, Hiroki Kubota, Nilendran Prathalingham, William Holt, Kenjiro Kohri, and John Parrington "In Vivo Gene Transfer by Electroporation Allows Expression of a Fluorescent Transgene in Hamster Testis and Epididymal Sperm and Has No Adverse Effects upon Testicular Integrity or Sperm Quality," Biology of Reproduction 74(1), 95-101, (1 January 2006). https://doi.org/10.1095/biolreprod.105.042267
Received: 23 March 2005; Accepted: 1 September 2005; Published: 1 January 2006
JOURNAL ARTICLE
7 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top