Trophoblast-Specific Reduction of VEGFA Alters Placental Gene Expression and Maternal Cardiovascular Function in Mice

Authors: Han Li, Dawei Qu, Angela McDonald, Sarah M. Isaac, Kathie J. Whiteley, et. al.
Source: Biology of Reproduction, 91(4)
Published By: Society for the Study of Reproduction
URL: https://doi.org/10.1095/biolreprod.114.118299
Trophoblast-Specific Reduction of VEGFA Alters Placental Gene Expression and Maternal Cardiovascular Function in Mice

Han Li,3,4 Dawei Qu,3 Angela McDonald,3 Sarah M. Isaac,3 Kathie J. Whiteley,3 Hoon-Ki Sung,3 Andras Nagy,3,5 and S. Lee Adamson2,3,4,5

3Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
4Department of Physiology, University of Toronto, Toronto, Ontario, Canada
5Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada

ABSTRACT

Given the angiogenic function of vascular endothelial growth factor A (VEGFA), the function of its expression by trophoblast in the avascular placental junctional zone is unknown. In mice, cells from the trophoblast-specific protein alpha (Tpbpa) lineage populate this zone and, in late gestation, some of these cells invade the decidual layer. To diminish Vegfa expression in Tpbpa cells, we crossed Vegfaflx/flx females with males carrying Tpbpa-Cre. For single deletion (sd) of Vegfa in Tpbpa cells in 100% of conceptuses (SD100 pregnancies, sd conceptuses) we crossed homozygous lines. For double deletion (dd) of both Vegfa alleles in 50% of the conceptuses (DD50 pregnancies, 50% dd conceptuses and 50% no deletion [nd]), we crossed homozygous Vegfaflx/flx females with males heterozygous for Tpbpa-Cre and homozygous for Vegfaflx/flx. Controls were Vegfaflx/flx females bred to wild-type males (V-CTRL pregnancies). In SD100 pregnancies, maternal plasma immunoreactive VEGFA significantly increased and arterial blood pressure decreased, whereas fetal body weight and placental Flt1, sFlt1, and Prl3b1 mRNA were unchanged. In DD50, maternal immunoreactive VEGFA and arterial pressures were unaltered, but both dd and nd conceptuses exhibited significantly increased embryonic lethality, altered expression of Flt1, sFlt1, and Prl3b1 mRNA in the decidual layer, and decreased fetal body weight relative to V-CTRL. Maternal cardiac output significantly increased in proportion to dd conceptuses in the pregnancy. In DD50, results are consistent with altered maternal function beginning in early gestation and adversely impacting both conceptus genotypes. We conclude that maternal function is influenced by Vegfa expression in trophoblast cells at the maternal-fetal interface, likely via an endocrine mechanism.

INTRODUCTION

During pregnancy, vascular endothelial growth factor (VEGF) A plays an irreplaceable role in mouse embryogenesis. Indeed, even inactivation of a single copy of Vegfa from the embryo and placenta results in early embryonic lethality [1, 2]. VEGFA appears to be important in maternal pregnancy adaptations as well; VEGFA protein increases in the maternal circulation during pregnancy in humans [3] and mice [4], and diminished VEGFA activity due to excess sFLT1 is associated with maternal hypertension and diminished cardiac output in pre-eclampsia, a life threatening complication of human pregnancies [5, 6].

Pre-eclampsia is believed to result from abnormal function of fetal-derived trophoblast cells in the placenta [7]. In pre-eclampsia, trophoblast cells invade less deeply into the maternal decidual layer, which ultimately is thought to result in reduced uteroplacental perfusion, and excessive trophoblast production of sFLT1 [6, 7]. High sFLT1 is thought to upset the VEGFAs/sFLT1 balance in the maternal circulation, thereby leading to the clinical signs of gestational hypertension and proteinuria in pre-eclamptic pregnancies [6]. Whether reducing VEGFA production by trophoblast cells has a similar detrimental effect on the VEGFAs/sFLT1 balance in the maternal circulation, and on adverse maternal outcomes, is unknown.

In the human placenta, VEGFA is expressed by trophoblast cells that invade the decidual layer [8, 9]. VEGFA expression is also high in the distal regions of the relatively avascular trophoblast cell columns, from which these invasive cells differentiate [9]. VEGFA expression is strikingly reduced in this area in pre-eclampsia [9, 10]. The mouse counterpart of the human trophoblast cell column is the junctional zone [11], which also expresses VEGFA [12] and is similarly quite avascular [13]. The junctional zone of the mouse placenta is believed to primarily play an endocrine role, whereas fetal-maternal exchange occurs in the highly vascular labyrinth, which is analogous to the villous region of the human placenta. Since trophoblast cells in the junctional zone are largely derived from the placental-specific [14] and rodent-specific [15] trophoblast Tpbpa lineage, the availability of Tpbpa-Cre transgenic mice and Vegfa-flx mice provides an opportunity to use the Cre-loxP system to explore the function of VEGFA expression by trophoblast cells in the junctional zone in vivo.

In the current study, we crossed homozygous Vegfaflx/flx females with homozygous Tpbpa-Cre males to singly delete (sd)
a Vegfa allele in Tpbpa cells in 100% of conceptuses (SD1₀₀ pregnancies) (Table 1). We found that conceptuses survived deletion of one copy of Tpbpa-Vegfa. We were therefore able to doubly delete (dd) both Tpbpa-Vegfa alleles in 50% of the conceptuses (with no deletion in 50% [nd]) by crossing homozygous Vegfalox/lox females with males heterozygous for Tpbpa-Cre and homozygous for Vegfalox/lox (DD5₀ pregnancies) (Table 1). Phenotypes of three possible control lines (Table 1) were evaluated, and Vegfalox/lox females bred to wild-type males were used as the most relevant control (V-CTRL pregnancies). Not that, herein, upper case abbreviations are used for pregnancy group names, and lower case abbreviations for conceptus group names.

We hypothesized that VEGFA produced by Tpbpa-trophoblast cells in the junctional zone and adjacent decidual layer would primarily affect maternal function, given evidence supporting an important endocrine role for the junctional zone [16]. Furthermore, the maternal circulation receives maternal venous blood that has percolated through numerous tiny trophoblast-lined channels within the junctional zone [13]. Substances derived from the junctional zone may therefore enter maternal venous blood and then be carried into the systemic circulation to affect maternal function. Given the importance of VEGFA in promoting vascularity and cell migration [2], we also evaluated the effects of reducing Vegfa in trophoblast of the Tpbpa lineage on placental morphology, and on the uteroplacental and fetoplacental circulations.

MATERIAL AND METHODS

Animal Experiments

Experiments were approved by the Animal Care Committee of the Toronto Centre for Phenogenomics and Mount Sinai Hospital (Toronto, ON, Canada) and were conducted in accord with guidelines established by the Canadian Council on Animal Care. Mouse lines were maintained on an ICR outbred background (or the equivalent CD1 strain [17]) for >10 generations. Females (~8 wk) were studied in their first pregnancies. The presence of a sperm plug was defined as Gestational Day (GD) 0.5.

Tpbpa-Cre mice (Mouse Genome Informatics (MGI) trangene: Tg [Tpbpa-Cre,-EGFP] 5Jcc) [18] (a gift from Dr. J. Cross, University of Calgary, Calgary, AB, Canada) and Vegfa-loxP (MGI: Vegfavalu122mnel [19] (courtesy of Dr. N. Ferrera) were bred to create two levels of tissue-specific Vegfa deficiency (Table 1). Genotyping was performed using PCR primers to detect Tpbpa-Cre and Vegfa (Table 2). In SD1₀₀ pregnancies, Cre expression in Tpbpa-expressing cells would be anticipated to delete a single copy of Vegfa in all conceptuses (the dd conceptus group). In DD5₀ pregnancies, Cre expression would be anticipated to delete both copies of Vegfa (i.e., cause double deletion [dd]) in 50% of the conceptuses (the dd group), whereas no deletion would be anticipated in the remainder of the litter (the nd group). Efficacy and tissue specificity of Cre deletion was assessed at GD8.5, 14.5, and 17.5 by breeding Tpbpa-Cre mice with Z/Red reporter mice (MGI: Tg [CAG-Bgeo,-DsRed*MST] 1Nagy) [20]. All other experimental variables were evaluated at GD17.5 of pregnancy (2 days before normal term delivery). In control experiments, ICR outbred mice (Charles River, Saint-Constant, PQ, Canada) were used to test for possible phenotypes caused by inheritance of the paternal Tpbpa-Vegfa transgene (C-CTRL) or caused by the maternal homozygous Vegfa-loxP transgene (V-CTRL). Phenotypes were compared to background ICR × ICR controls (B-CTRL) (Table 1).

Cardiovascular Measurements at GD17.5

After recording maternal body weight, we measured maternal uterine arterial blood velocity [21], maternal cardiac output, blood velocity in the maternal arterial canals of the placenta, and fetal umbilical artery and vein blood velocities and diameters using micro-ultrasound (30- or 40-MHz transducer, Vevo770 or Vevo2100; VisualSonics, Toronto, ON, Canada) in isoflurane-anesthetized mice inspiring 50% oxygen. Duration of anesthesia was limited to <1 h. Maternal rectal temperature (THM100; Indus Instruments, Houston, TX) was maintained between 36° and 38°C using a heat lamp and heat pad. Ventricular area was used to calculate cardiac output (Vevo770 EKV function), pulsed-wave Doppler to quantify angle-corrected blood velocity (inosonation angle <30°) and to calculate the Resistance Index (i.e., [peak systolic – end diastolic velocity]/peak systolic velocity), and calipers in B-mode images were used to measure vessel diameters. In DD5₀ pregnancies, conceptus genotypes were mixed, so mothers were killed while under anesthesia and imaged conceptuses were immediately identified. Three of ~10 conceptuses were imaged per pregnancy. Fetal tissue was collected from all conceptuses for genotyping.

Maternal ascending aortic blood pressure was measured using a catheter-tip transducer (SPR-671; Millar Instruments, Houston, TX) inserted via the carotid artery of isoflurane-anesthetized mice inspiring 50% oxygen, which were maintained at 36.5°C–37.5°C rectal temperature using a heating pad and lamp. Once stabilized (~2–3 min), arterial pressure was averaged over a 3-min recording period.

Collection of Maternal Plasma and Placental Tissues at GD17.5

While mice were anesthetized with isoflurane, a heparin-coated needle was inserted into the maternal left ventricular cavity under micro-ultrasound guidance as previously described [22]. Maternal blood (1–1.5 ml) was collected, and plasma stored at ~20°C until analysis. After death, the pregnant uterine horns were removed and placed in ice cold PBS. Maternal organ weights were measured. The number of conceptuses and reabsorption sites were recorded. One by one, the uterus was cut to isolate a conceptus. The myometrium was removed and fetal and placental weights recorded. In a separate series, no ultrasound or blood pressure measurements were obtained, and samples for mRNA analysis were collected. Fetal weight was recorded. The uterus was collected as above. Each placenta was microdissected to obtain samples enriched for the decidual layer, junctional zone, labyrinth, and chorionic plate, as previously described [23]. Enriched samples for mRNA analysis were flash frozen in liquid nitrogen and stored at ~80°C. Enrichment of decidual layer samples was shown by high mRNA expression of Des (desmin is a specific marker of decidualized stromal cells [24]) and low expression of Ctsq (cathepsin Q is a specific marker of sinusoidal trophoblast giant cells [TOCs] [18]) (Supplemental Fig. S1, A and C; all Supplemental Data are available online at www.bioreprod.org). Low contamination of junctional zone samples by decidual stromal cells was shown by low Des mRNA expression (Supplemental Fig. S1A). Low contamination of labyrinth by junctional zone and decidual stromal cells was shown by low expressions of Prla8 (a prolactin-specific marker of spongiosotrophoblast [16]) and Des (Supplemental Fig. S1, A and C), respectively. Some expression of the labyrinth-specific gene Ctsq was observed in junctional zone samples as anticipated (Supplemental Fig. S1C) due to interdigitation of the junctional zone-labyrinth interface.

TABLE 1. Breeding schemes, and parental and conceptus genotypes for control and experimental groups.*

<table>
<thead>
<tr>
<th>Pregnancy group</th>
<th>Mother</th>
<th>Father</th>
<th>Litter</th>
<th>Conceptus group</th>
<th>Tpbpa-Vegfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>ICR</td>
<td>ICR</td>
<td>→ 100%</td>
<td>ICR</td>
<td>b-ctrl</td>
</tr>
<tr>
<td>B-CTRL</td>
<td>ICR</td>
<td>ICR</td>
<td>→ 100%</td>
<td>Cre/+</td>
<td>c-ctrl</td>
</tr>
<tr>
<td>C-CTRL</td>
<td>ICR</td>
<td>Cre/Cre</td>
<td>→ 100%</td>
<td>Vegfalox/lox/+</td>
<td>v-ctrl</td>
</tr>
<tr>
<td>V-CTRL</td>
<td>Vegfalox/lox</td>
<td>ICR</td>
<td>→ 100%</td>
<td>Vegfalox/lox/+</td>
<td>v-ctrl</td>
</tr>
<tr>
<td>Experimental</td>
<td>SD1₀₀</td>
<td>Vegfalox/lox</td>
<td>Cre/Cre</td>
<td>→ 100%</td>
<td>(Cre/+; Vegfalox/lox)</td>
</tr>
<tr>
<td></td>
<td>DD5₀</td>
<td>Vegfalox/lox</td>
<td>(Cre/+; Vegfalox/lox)</td>
<td>→ 50%</td>
<td>(Cre/+; Vegfalox/lox)</td>
</tr>
</tbody>
</table>

* +, wild-type allele; Cre, Tpbpa-Cre transgene; Vegfalox/lox, Vegfa-floxed allele; Vegfa+, wild-type Vegfa allele.
Histology and Immunohistochemistry

Tpbpa-Cre mice crossed to Z/Red reporter mice were killed at GD9.5, 14.5, and 17.5, and whole uterine horns were immersed fixed in 4% paraformaldehyde overnight at 4°C on a shaker. At GD17.5, uteri from the experimental and V-CTRL pregnancies (Table 1) were collected using the same procedure. Segments of uterine, containing individual placentas with the uterus still attached, were isolated. Fetal tissue samples were collected for genotyping. Placentas were further fixed for 12 h followed by dehydration, paraffin embedding, and routine histological methods (CMH Pathology Services, Toronto Centre for Phenogenomics, Toronto, ON, Canada). Hematoxylin and eosin (H&E) stain was used to examine placent morphology and Martius Scarlet Blue stain was used to examine blood clots in GD9.5 implantation sites of homozygous *Tpbpa*-Cre females. Immunohistochemistry was used to detect red fluorescent protein in pregnancies containing Zred conceptuses (ab34771, rabbit anti-RFP; Abcam, Toronto, ON, Canada), to detect cytokeratin as a marker of trophoblast cells (Z0622, rabbit anti-cytokeratin; Dako, Burlington, ON, Canada), and to detect CD34 as a marker for fetal endothelial cells in the labyrinth (ab8158, rabbit anti-rat IgG; Abcam).

PCR Analysis

Confirmation of Cre-mediated deletion of the loxP-flanked exon 3 of *Vegfa* was performed using DNA extracted from the decidual layer, junctional zone, and fetal tail samples. Primers (forward, 5′-CTTGCAGGACCGCAACTACAAGA-3′; reverse, 5′-ACACTCTGCTGCTGAGAACGG-3′) were designed to flank both loxP sites spanning a fragment of >1.8 kb. Upon cre activity, the fragment between the two loxP sites was excised, resulting in a 450-bp fragment (Fig. 1).

Gene Expression

RNA was extracted from microdissected tissue collected from the decidual layer, junctional zone, and labyrinth using the Trizol method. DNA and RNA contaminants were removed using kits (RNase-Free DNase kit, no. 79252; Qiagen, Toronto, ON, Canada; RNeasyMinElute, no. 74204; Qiagen). Purified RNA samples were then reverse transcribed to cDNA (Taqman Reverse Transcription Reagents, no. N8080234; Life Technologies, Burlington, ON, Canada). Gene expression was measured in triplicate by quantitative RT-PCR using SYBR Green Supermix (Bio-Rad, Mississauga, ON, Canada). Results are expressed as ΔΔCT relative to three housekeeping genes (β-actin, GAPDH, and TBP). Primer sequences are listed in Table 2.

Assay (no. 500-0006; Bio-Rad). Tissue ir-VEGFA protein was measured by ELISA (no. MMV00), and was expressed per unit total protein.

Histomorphometry

Placental histomorphometry at GD17.5 was performed on H&E-stained midline placental sections. Point counting at intersections of a superimposed grid (newCAST; Visiopharm, Denmark) was used to quantify total placental area, and the areas of the decidual layer, junctional zone, labyrinth, and chorionic plate, as well as the percent area occupied by glycogen cells in the decidual layer. Point counting was also used on CD34-stained sections to quantify the area of fetal blood spaces (brown CD34 staining) and the area of maternal blood spaces in the labyrinth.

Statistical Analysis

Statistical significance (p < 0.05) was determined using one- or two-way ANOVA as appropriate, followed by post hoc tests when ANOVA revealed significant differences (GraphPad Prism 5.0; GraphPad Software, Inc., San Diego, CA). Results are reported as the mean ± SEM. N for maternal variables is the number of pregnancies. For conceptus variables, n is the number of conceptuses or conceptus pools. In some cases, pooling was necessary to obtain sufficient tissue volume for analysis.

RESULTS

Tpbpa and Vegfa mRNA Expression in the Mature Mouse Placenta

As anticipated, *Tpbpa* mRNA was highly expressed in tissue enriched for the junctional zone and decidual layer (Fig. 2A), whereas levels in the labyrinth were low. This result is consistent with prior work that used in situ hybridization to show strong and specific *Tpbpa* expression by spongiotrophoblast, glycogen trophoblast, and spiral artery TGCs (SpA-TGC) [18, 25, 26]. Thus, *Tpbpa-Cre* would be anticipated to be highly expressed in the decidual layer and junctional zone at this stage of gestation.

Vegfa mRNA was most highly expressed in the decidual layer, whereas it was similarly expressed at a lower level in the junctional zone and labyrinth layer (Fig. 2B). mRNA expression of the VEGFA receptor, *Kdr*, showed a similar pattern of expression to *Vegfa* (Fig. 2C). In contrast, *Flt1* mRNA expression was high in both the decidual layer and junctional zone, and low in the labyrinth layer (Fig. 2D), consistent with the distribution of LacZ staining at GD14.5 in prior work [27]. *Sflt1* mRNA showed a significant gradient: high levels in the decidual layer, moderate levels in the junctional zone, and low levels in the labyrinth (Fig. 2E). Thus,
in the decidual layer, Tpbpa-Cre-mediated Vegfa gene deletion would be anticipated to reduce Vegfa mRNA and its actions on Kdr and Flt1 receptors, all of which are highly expressed in this layer. In the junctional zone, Kdr mRNA was low and Flt1 mRNA high relative to expression levels in the decidual layer, suggesting that the Flt1 receptor in the junctional zone may play a more prominent role, mediating the effects of Tpbpa-Cre-mediated Vegfa gene deletion at that site.

Tpbpa-Cre-Recombinase Expression Pattern and Efficacy of Excision

Consistent with previous work [26, 28, 29], we observed both Tpbpa-Cre expression and activity exclusively within the ectoplacental cone region in early gestation (Fig. 3, A–C), and within the junctional zone and adjacent maternal decidual layer in later gestation (Fig. 3, D–F). Histological analysis showed Cre activity in spongiotrophoblast cells in the junctional zone.
(Fig. 3H), glycogen trophoblast cells in the junctional zone and proximal decidual layer (Fig. 3I), in some canal TGCs (Fig. 3J), and in SpA-TGCs (Fig. 3K). These results confirmed that the Tpbpa-Cre promoter construct is specifically expressed, and that the gene product, Cre-recombinase, is functional. No ectopic cre expression (green) was detected in any maternal organs examined by gross dissection, including uterus, vagina, liver, spleen, kidneys, ovaries, small and large intestine, lung, heart, brain, and skin.

Pregnancy Outcomes in Transgenic Lines

Homozygous Tpbpa-Cre mice were required to obtain SD100 pregnancies (Table 1). Unexpectedly, homozygous Tpbpa-Cre females, when bred with ICR males, developed vaginal bleeding at ~GD9.5. They were often weak and pale, and most became moribund or aborted. Severe hemorrhage within all implantation sites was observed postmortem (Fig. 4). However, ICR females bred to homozygous Tpbpa-Cre males, and thus also carrying 100% heterozygous Tpbpa-Cre conceptuses, gained weight normally and had normal litter sizes of viable embryos near term (Supplemental Table S1).
Therefore, paternal homozygous Tpbpa-Cre was used in SD100 pregnancies (Table 1).

Pregnancy phenotypes of three possible control lines (Table 1) were evaluated. We tested paternal Tpbpa-Cre control (C-CTRL) or maternal Vegfalox/lox control (V-CTRL) pregnancies versus background control (B-CTRL) pregnancies (Table 1). The only difference detected among the groups was the slightly smaller litter size of V-CTRL pregnancies (10 vs. 13 per litter; Supplemental Table S1). V-CTRL pregnancies were selected as the most relevant control, because both SD\textsubscript{100} and DD\textsubscript{50} experimental groups had Vegfalox/lox mothers (Table 1). V-CTRL, C-CTRL, and B-CTRL groups did not significantly differ in maternal body weights, maternal organ weights, maternal hematology parameters, maternal cardiac outputs, maternal uterine arterial blood velocities, or their Resistance Index, litter sizes, percent reabsorption sites, fetal and placental weights, or in the maternal canal, umbilical artery, and umbilical vein blood velocities and diameters (Supplemental Tables S1 and S2).

Pregnancy Outcomes with Cre-Mediated Vegfa Deletion

As anticipated in DD\textsubscript{50} pregnancies, deletion of Vegfa exon 3 was detected in the junctional zone and decidual layer of dd placentas, whereas it remained intact in not deleted (nd) litter mates and in the tails of dd conceptuses (Fig. 1).

In dd placentas, Cre-mediated deletion significantly decreased expression of ir-VEGFA protein in the junctional zone and decidual layer relative to nd littermates (Fig. 5, A and D). In sd placentas of SD\textsubscript{100} pregnancies, expression of ir-VEGFA protein was significantly reduced in the decidual layer and junctional zone (Fig. 5, D and E) in comparison to V-CTRL placentas. Labyrinth ir-VEGFA protein was not significantly affected (Fig. 5F) in sd and dd placentas relative to their appropriate controls. Thus, we were successful in creating an incremental reduction of ir-VEGFA protein specifically in the decidual layer and junctional zone of sd and dd placentas using Cre-mediated Vegfa deletion.

Maternal consequences. We hypothesized that diminishing VEGFA expression in Tpbpa trophoblast cells would affect maternal function by diminishing VEGFA release into the maternal circulation. However, in SD\textsubscript{100} pregnancies, there was a paradoxical 25% increase in ir-VEGFA in maternal plasma relative to V-CTRL (Fig. 6A) despite reduced ir-VEGFA protein in both the decidual layer and junctional zone (Fig. 5, D and E). Immunoreactive s FLT1 levels in maternal plasma were not significantly changed in SD\textsubscript{100} pregnancies (Supplemental Table S2). Nevertheless, maternal function was significantly affected. Maternal arterial blood pressure was significantly reduced (Fig. 6B), whereas no change was detected in cardiac output expressed per unit maternal body weight in SD\textsubscript{100} pregnancies (Fig. 6C).

In DD\textsubscript{50} pregnancies, plasma ir-VEGFA levels and arterial pressure were not significantly altered relative to V-CTRL (Fig. 6, A and B). Possibly this was because decidual layer and junctional zone ir-VEGFA protein was only reduced in dd conceptuses, which comprised ~50% of each litter, while ir-VEGFA in nd placentas was not significantly different from v-ctrl (Fig. 5, D and E). Immunoreactive s FLT1 levels in maternal plasma were also not significantly altered in DD\textsubscript{50} pregnancies (Supplemental Table S2). However, cardiac output per unit maternal body weight was significantly increased by 20% compared to V-CTRL pregnancies (Fig. 6C). Interestingly, the maternal cardiac output per unit body weight in DD\textsubscript{50} pregnancies was positively correlated with the percentage of dd conceptuses (P < 0.05; Fig. 6D), as was maternal heart weight per unit body weight (P < 0.008; Fig. 6E). These relationships suggest that the presence of dd conceptuses led to a significant augmentation in maternal cardiac output.

SD\textsubscript{100} and DD\textsubscript{50} pregnancies did not significantly differ from V-CTRL in other measured parameters, including maternal heart rate, maternal body weight, maternal kidney, spleen, heart, or liver weights, maternal hematology parameters, maternal uterine arterial blood velocities, and resistance index, litter size, and maternal progesterone (Supplemental Table S2). There were also no significant differences between

FIG. 4. Intrauterine bleeding occurred in pregnant homozygous Tpbpa-Cre females (cre/cre) mated with wild-type ICR males (A–D). A wild-type pregnant uterus is shown as a control (E–H). A: Uteri from pregnant homozygous Tpbpa-Cre females contained prominent black regions of hemorrhage around conceptuses by GD9.5. B: A histological cross-section of a conceptus at GD9.5 stained with Martius scarlet blue (MSB) showing hemorrhage (yellow) in the ectoplacental cone (C) and near the primary giant cells (D). Boxed regions in B are shown at higher magnification in C and D. Arrows in D show primary TGCs. E: Intrauterine bleeding was not observed in wild-type pregnant uteri at GD9.5 or in histological sections (F–H). Boxed regions in F are shown at higher magnification in G and H. Bar = 125 μm in B and F; 70 μm in C and G; and 35 μm in D and H.
groups in the velocity of maternal blood flowing in placental arterial canals (Supplemental Table S3).

Fetal and placental consequences. The proportion of implantation sites that were resorbed was significantly increased in DD50 compared to V-CTRL pregnancies, implying that a disruption in early gestation had occurred (Table 3). The proportion of surviving dd and nd fetuses at GD17.5 (46:51) did not significantly differ from the expected 50:50 Mendelian ratio, implying that resorption had similarly affected both genotypes. In addition, DD50 pregnancies had smaller fetuses (1.06 ± 0.06 g), regardless of dd or nd genotype, than did V-CTRL pregnancies (1.15 ± 0.09 g) (Table 3). There were no significant changes in resorption sites or fetal body weight in sd conceptuses from SD100 pregnancies compared to V-CTRL (Table 3).

Interestingly, in DD50 pregnancies, expression of Flt1 and sFlt1 mRNA in the decidual layer did not significantly differ between nd and dd placentas (Fig. 7, A and B), despite large genotype-dependent differences in Vegfa mRNA and protein expression (Fig. 5, A and D). Instead, Flt1 and sFlt1 mRNA levels in the decidual layer were significantly up-regulated by ~50% for both nd and dd genotypes when compared to v-ctrl (Fig. 7, A and B). A similar trend was observed in the junctional zone (Fig. 5, B and E; Fig. 7, D and E). Kdr mRNA expression did not differ between groups (not shown). For sd placentas, no significant changes were detected in Flt1, sFlt1, or Kdr mRNA in the junctional zone or decidual layer.

Prl3b1 (PL-II) is highly expressed in spongiotrophoblast [16] and plays an important role in maintaining pregnancy by regulating maternal corpus luteum function [30]. For placentas from DD50 pregnancies, Prl3b1 mRNA expression in the decidual layer and junctional zone was significantly down-regulated by 30–40% in both dd and nd compared to v-ctrl placentas (Fig. 7, C and F). In sd placentas, no significant changes in Prl3b1 mRNA were detected (Fig. 7, C and F).

We were surprised to see that Flt1, sFlt1, and Prl3b1 mRNA in nd and dd placentas were similarly abnormal relative to the v-ctrl group (Fig. 7). We wondered whether similar changes in gene expression in nd and dd conceptuses versus v-ctrl conceptuses could be explained by homozygous Vegfa^{ΔΔ} alleles in nd and dd, whereas v-ctrl conceptuses were heterozygous for this allele (Table 1). However, Flt1, sFlt1, and Prl3b1 mRNA expression in the decidual layer of Vegfa^{ΔΔ} conceptuses did not significantly differ from v-ctrl conceptuses (n = 8/group; data not shown), indicating that this genotype difference cannot explain this finding.

In dd placentas, Cre-mediated deletion significantly decreased expression of Vegfa mRNA in the junctional zone and decidual layer relative to nd littersmates (Fig. 5, A and D). However, unexpectedly, Vegfa mRNA in nd controls differed from the v-ctrl group; levels were significantly higher than v-
ctrl in the junctional zone and lower than v-ctrl in the labyrinth (Fig. 5, B and C). It is possible that altered Vegfa mRNA in nd littermates may be part of a compensatory response to the experimentally imposed limitation on Vegfa mRNA expression in Tpbpa-expressing trophoblast cells in this zone in dd conceptuses. Changes in Vegfa gene expression in nd conceptuses provide further evidence supporting effects on nd caused by dd conceptuses in the pregnancy, even though Vegfa mRNA changes (Fig. 5A) were not associated with parallel changes in ir-VEGFA protein (Fig. 5B).

Despite differences in VEGFA protein expression, and Flt1, sFlt1, and Prl3b1 mRNA expression, no differences in placental morphology were detected between dd, nd, and v-ctrl placentas (Supplemental Fig. S2); there were no significant differences in the percent area of the placenta occupied by the decidual layer, junctional zone, labyrinth, or chorionic plate, in the percent area of the labyrinth occupied by fetal or maternal blood spaces, or in the proportion of glycogen cells in the decidual layer (Supplemental Table S4). Placental weight also did not differ between groups (not shown). There were also no

TABLE 3. Pregnancy outcome for control and experimental groups at GD17.5.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>V-CTRL</th>
<th>SD<sub>100</sub></th>
<th>DD<sub>50</sub></th>
<th>nd</th>
<th>dd</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of pregnancies</td>
<td>14</td>
<td>15</td>
<td>11</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Litter size</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Embryo body weight (g)<sup>a</sup></td>
<td>1.15 ± 0.09<sup>a</sup></td>
<td>1.19 ± 0.11<sup>a</sup></td>
<td>1.06 ± 0.06<sup>b</sup></td>
<td></td>
<td></td>
<td>P < 0.05</td>
</tr>
<tr>
<td>Embryo resorption sites/total implantation sites</td>
<td>1/140<sup>a</sup></td>
<td>1/159<sup>a</sup></td>
<td>18/124<sup>b</sup></td>
<td></td>
<td></td>
<td>P < 0.05</td>
</tr>
<tr>
<td>No. of DD<sub>50</sub> live embryos by genotype</td>
<td>51</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td>ns<sup>5</sup></td>
</tr>
<tr>
<td>Body weight of DD<sub>50</sub> live embryos (g)<sup>4</sup></td>
<td>1.08 ± 0.06</td>
<td>1.05 ± 0.07</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

* ns, not significant.
^a ns, not significantly different than anticipated 50:50 ratio.
¹ Values are presented as mean ± SEM.
^{a,b} Different superscript letters indicate statistically significant difference between groups.
differences in blood velocity in the umbilical artery or vein, the umbilical artery Resistance Index, or the diameter of these vessels between the groups (Supplemental Table S3).

DISCUSSION

The current study investigated the function of VEGFA expressed by trophoblast cells in the junctional zone, a relatively avascular region of the maternal-fetal interface of the placenta. Results showed that deleting a single copy of Vegfa in 100% of the litter in SD100 pregnancies reduced ir-VEGFA protein expression in the decidual layer and junctional zone, while paradoxically increasing ir-VEGFA in the maternal circulation. Maternal arterial blood pressure was significantly reduced, but other maternal, placental, and fetal parameters were unaffected. The more severe reduction in expression in dd conceptuses adversely impacted early gestation, resulting in increased litter-wide resorptions, layer-specific alterations in sFlt1, Flt1, and Prl3b1 gene expression, and reduced fetal body weights. These changes affected the whole litter, regardless of genotype and independent of ir-VEGFA expression in the decidual layer and junctional zone. Maternal cardiovascular function was also altered by double deletion of Vegfa in 50% of the litter in DD50 pregnancies, but, in this case, maternal cardiac output was significantly increased, whereas arterial pressure was unchanged. Maternal circulating ir-VEGFA was unaffected in DD50 pregnancies. Findings from both models support our central hypothesis, that VEGFA expression in

FIG. 7. mRNA gene expression in layer-enriched samples of placentas at GD17.5. Flt1 (A, D, and G), sFlt1 (B, E, and H), and Prl3b1 (C, F, and I) mRNA expression measured by quantitative RT-PCR is shown for samples enriched for decidua (A–C), junctional zone (D–F), or labyrinth (G–I). Results are shown relative to expression in v-ctrl control conceptuses (=1). dd and nd, dd conceptuses and nd conceptuses from DD50 pregnancies; sd, sd conceptuses from SD100 pregnancies; v-ctrl, control conceptuses from V-CTRL pregnancies. Above bars, n indicates number of conceptuses from which placental tissues were obtained. If letters above bars differ, then results differ based on a one-way ANOVA, which, if significant, was followed by Tukey post hoc multiple comparison test (P < 0.05). Mean ± SEM.
Tpbpa trophoblast cells plays a role in maintaining normal maternal function during pregnancy. Results were inconsistent with a direct effect of reduced placental VEGFA protein expression on VEGFA protein levels in the maternal circulation. They were also inconsistent with a direct effect of reduced placental VEGFA on conceptus survival, growth, and *Flt1, sFlt1, and Prl3b1* mRNA expression in the decidual layer, because similar changes were seen in dd and nd conceptuses in DD$_{50}$ pregnancies. Instead, we infer that altering VEGFA in *Tpbpa* trophoblast most likely alters maternal function indirectly by influencing trophoblast endocrine function.

Cre expression in both *Vegfa* sd and dd placentas successfully reduced ir-VEGFA protein expression in the decidual layer and junctional zone relative to their controls (v-ctrl and nd, respectively). However, the observed reduction (20%–26% in sd, 30%–50% in dd) was less than the maximum possible percent reduction (50% in sd, 100% in dd). The less-than-maximal reduction in ir-VEGFA protein could be attributed to VEGFA produced by non-*Tpbpa*-expressing cells in these layers, VEGFA in matrix that may be derived from distant sources, and/or incomplete Cre-mediated deletion in *Tpbpa*-expressing cells. Nevertheless, ~50% reduction in VEGFA mRNA expression in the decidual layer and junctional zone was anticipated to be sufficient to exert a physiological effect. This was based on prior work using the same Vegfa-loxP mouse line for Cre-mediated deletion. In the lung, cre-mediated deletion in epithelial cells [31] or type II pneumocytes [32] caused ~50% reduction in lung Vegfa mRNA compared to no-deletion littersmates, and resulted in pulmonary hypovascularity [31] or lung emphysema, and marked alterations in the lung’s response to injury [32]. In the kidney, cre-mediated deletion in podocytes caused early postnatal renal disease [33]. Furthermore, a 50% reduction in Vegfa mRNA in heterozygous knockout mice was sufficient to cause embryonic lethality [1, 2].

Cre activity was detected by GD8.5, indicating that Cre-mediated *Vegfa* deletion would be occurring at the onset of the formation of the uteroplacental and fetoplacental circulations and the onset of embryonic cardiac function [34, 35]. Early deletion likely accounts for the increase in conceptus resorptions observed in DD$_{50}$ pregnancies. These resorptions were not dependent on conceptus genotype, suggesting that resorptions were caused indirectly by a maternal response to *Vegfa* deletion in a subset of her conceptuses. Interestingly, Notch2 deletion from *Tpbpa* trophoblast also increases resorptions in a similarly conceptus-genotype-independent manner [36].

It is intriguing that cardiac output was higher in late gestation only in DD$_{50}$ pregnancies, the group in which early gestational defects were observed. In human pregnancy, cardiac output increases in early gestation, reaches maximal levels in midgestation, and thereafter remains stable or declines [37]. Presumably, the early increase is hormonally mediated, although the specific mechanism is unknown. In DD$_{50}$ pregnancies, it is likely that elevated cardiac output also occurred in early gestation, because heart weight, as well as cardiac output, was correlated with the percent of dd conceptuses, and cardiac hypertrophy would take time to occur. In contrast, in SD$_{100}$ pregnancies, the decrement in ectoplacental cone and/or junctional zone expression of VEGFA in sd conceptuses was insufficient to elicit early gestational lethality, and it also failed to alter cardiac output response in late gestation.

At GD17.5, significant reductions in ir-VEGFA protein were observed in the decidual layer, where Spa-TGCs are localized, and in the junctional zone, where canal TGCs (C-TGC) are found. Spa-TGC are 100% derived from the *Tpbpa*-positive trophoblast lineage [18]. C-TGCs, which line the maternal arterial canals in the junctional zone and labyrinth, are also partially derived from the *Tpbpa* lineage [18]. Nevertheless, a reduction in VEGFA protein in Spa-TGCs and C-TGCs, which presumably occurred, caused no significant change in the histomorphometry of the decidual layer or in blood velocities observed upstream in the uterine artery or downstream in the maternal arterial canals of the placenta. This suggests that reduced VEGFA did not impair the ability of Spa-TGCs to tap into the maternal spiral arteries nor alter flow from the spiral arteries through the trophoblast-derived arterial canals. Normal uteroplacental arterial inflow also suggests that venous outflow is maintained and, hence, that the venous channels in the junctional zone [13] continued to function normally, despite the reduction in VEGFA induced in junctional zone trophoblast cells.

At GD17.5, there are abundant *Tpbpa*-expressing glycogen trophoblast cells in the decidual layer. However, they do not migrate there until after GD12.5 [38], which is after the uteroplacental circulation has been initiated [13]. Interestingly, histomorphometry showed no change in the proportion of the decidual layer occupied by glycogen trophoblast cells. This suggests that Cre-mediated *Vegfa* deletion did not impair their migration, despite a known role for VEGFA in promoting migration of human trophoblast cells [39] and other cell types, including endothelial cells [40] and monocytes [41, 42], in in vitro assays. Thus, there was no evidence that VEGFA derived from *Tpbpa*-expressing cells in the decidual layer played an important role in establishing the uteroplacental circulation, or in controlling the invasion of glycogen trophoblast cells into the decidual layer in later gestation.

In contrast to the placenta, which appeared to develop normally, maternal cardiovascular changes were observed. In human pregnancy, pre-eclampsia is associated with diminished VEGFA activity due to excess sFLT1, maternal hypertension, and diminished cardiac output [5, 6]. Thus, we wondered whether reducing VEGFA production by trophoblast cells would have a similar detrimental effect on the VEGFA/sFLT1 balance and would adversely affect maternal outcomes. Instead, we found that reducing ir-VEGFA in the decidual layer and junctional zone augmented maternal plasma ir-VEGFA levels in SD$_{100}$ pregnancies only, but, in both models, augmented a component of the normal maternal cardiovascular response to pregnancy (a decrease in arterial pressure in SD$_{100}$ or an increase in cardiac output in DD$_{50}$). In SD$_{100}$ pregnancies, maternal arterial blood pressure was reduced by ~15 mm Hg relative to V-CTRL. Because of the hypotensive effects of VEGFA [2], the decrease in arterial pressure may have been mediated by the unexpected increase in ir-VEGFA in maternal plasma, which occurred despite reduced placental ir-VEGFA expression in 100% of the litter. In DD$_{50}$ pregnancies, maternal cardiac output was increased by ~20%, an increase that was correlated with the percentage of dd conceptuses. In this case, ir-VEGFA in maternal plasma and maternal arterial pressure were unchanged, so a potential mechanism was not apparent. In both cases, the magnitude of cardiovascular change was substantial relative to normal pregnancy given that, from early to midgestation in mice and humans, arterial pressure decreases transiently by ~10 mm Hg and cardiac output rises in a more sustained manner by ~50% [43-45].

In the current study, the cardiovascular change (i.e., arterial pressure versus cardiac output) differed between groups, which suggests that different placenta-derived mediators are responsible for decreasing arterial pressure and for increasing cardiac pressure.
output. In mice, this is consistent with their differing time courses: arterial pressure decreases transiently at GD11–13 [45], whereas cardiac output has already increased by GD9.5 and continues to rise to GD17.5 [44]. The hormonal mechanisms mediating these changes are unknown. With respect to human pregnancy, results of the current study do not support a role for reduced placental VEGFα in invasive cytotrophoblast cells in pre-eclampsia [9] as a mechanism causing maternal hypertension and reduced cardiac output [5].

During preliminary experiments, we discovered that homozygous Tpbpa-Cre females carrying heterozygous Tpbpa-Cre conceptuses had severe intrauterine bleeding and early embryo lethality. This was not caused by her heterozygous Tpbpa-Cre conceptuses, because it was not observed when the same genotype was generated in wild-type females using paternal cre. Tpbpa-Cre in maternal tissues is unlikely to be responsible based on the placental specificity of transcriptome tissue expression for Tpbpa (GEO dataset gds868), lack of detectable GFP expression in maternal organs (current study), and lack of Tpbpa expression by in situ hybridization in maternal ovaries [36]. In addition, if caused by Cre toxicity [46], then one would have expected an even greater bleeding phenotype in a prior study, in which Tpbpa-Cre was used to activate diphtheria toxin resulting in Tpbpa-cell ablation [26], but no bleeding was reported in that study. We speculate that the insertion site of the Tpbpa-Cre transgene may disrupt the function of a maternal gene that is required in maternal decidua tissues in early pregnancy. It would therefore be interesting to map the insertion site in future studies.

In the current study, both nd and dd conceptuses were present in DD_{50} pregnancies. Having control conceptuses in the presence of both genotypes in DD_{50} pregnancies would not have been apparent otherwise. However, it is important to note that a more severe maternal pregnancy phenotype was not expected otherwise. Nonetheless, an interesting observation was that nd mice were affected by changes in the maternal environment induced by the dd conceptuses, a novel finding that would not have been apparent otherwise. However, it is important to note that a more severe maternal pregnancy phenotype may occur in DD_{100} pregnancies (in which all conceptuses are dd), as a greater incidence of early embryonic lethality and/or greater abnormalities in maternal cardiovascular function. For this reason, it would be valuable to evaluate DD_{100} pregnancies in future studies.

In summary, we used Tpbpa-Cre-mediated deletion of floxed Vegfa to evaluate the role of VEGFα in Tpbpa-expressing trophoblast cells in mouse pregnancy. Deleting a single copy of Vegfa in these cells in 100% of the litter significantly reduced maternal arterial blood pressure, but other maternal, placental, and fetal parameters were unaffected. A more severe reduction in Vegfa caused by double deletion in 50% of the litter adversely impacted early gestation, resulting in increased litter-wide resorptions, alterations in placental gene expression, reduced fetal body weight, and higher maternal cardiac output. These changes could not be explained on the basis of a direct effect of Tpbpa-Vegfa gene deletion within the conceptus itself. Rather, observed changes were more likely secondary effects caused by changes in maternal functions, resulting from altered endocrine function of Tpbpa-expressing cells. It was surprising, given the known roles for VEGFA in vascular development in other tissues, that reduced VEGFα expression in trophoblast had no detectable impact on the uteroplacental or fetoplacental circulation in this study. In conclusion, results from both models support our central hypothesis that the role of VEGFα expression in Tpbpa trophoblast cells is primarily to regulate maternal function during pregnancy.

REFERENCES

