How to translate text using browser tools
9 September 2015 Global Transcriptomic Profiling of Bovine Endometrial Immune Response In Vitro. I. Effect of Lipopolysaccharide on Innate Immunity
Chike F. Oguejiofor, Zhangrui Cheng, Ayimuguli Abudureyimu, Ali A. Fouladi-Nashta, D. Claire Wathes
Author Affiliations +
Abstract

The dysregulation of endometrial immune response to bacterial lipopolysaccharide (LPS) has been implicated in uterine disease and infertility in the postpartum dairy cow, although the mechanisms are not clear. Here, we investigated whole-transcriptomic gene expression in primary cultures of mixed bovine epithelial and stromal endometrial cells. Cultures were exposed to LPS for 6 h, and cellular response was measured by bovine microarray. Approximately 30% of the 1006 genes altered by LPS were classified as being involved in immune response. Cytokines and chemokines (IL1A, CX3CL1, CXCL2, and CCL5), interferon (IFN)-stimulated genes (RSAD2, MX2, OAS1, ISG15, and BST2), and the acute phase molecule SAA3 were the most up-regulated genes. Ingenuity Pathway Analysis identified up-regulation of many inflammatory cytokines and chemokines, which function to attract immune cells to the endometrium, together with vascular adhesion molecules and matrix metalloproteinases, which can facilitate immune cell migration from the tissue toward the uterine lumen. Increased expression of many IFN-signaling genes, immunoproteasomes, guanylate-binding proteins, and genes involved in the intracellular recognition of pathogens suggests important roles for these molecules in the innate defense against bacterial infections. Our findings confirmed the important role of endometrial cells in uterine innate immunity, whereas the global approach used identified several novel immune response pathways triggered by LPS in the endometrium. Additionally, many genes involved in endometrial response to the conceptus in early pregnancy were also altered by LPS, suggesting one mechanism whereby an ongoing response to infection may interfere with the establishment of pregnancy.

Chike F. Oguejiofor, Zhangrui Cheng, Ayimuguli Abudureyimu, Ali A. Fouladi-Nashta, and D. Claire Wathes "Global Transcriptomic Profiling of Bovine Endometrial Immune Response In Vitro. I. Effect of Lipopolysaccharide on Innate Immunity," Biology of Reproduction 93(4), (9 September 2015). https://doi.org/10.1095/biolreprod.115.128868
Received: 3 February 2015; Accepted: 1 August 2015; Published: 9 September 2015
KEYWORDS
bovine
Endometrium
gene expression
innate immunity
uterine disease
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top