Translator Disclaimer
23 September 2015 Isolated Rat Epididymal Basal Cells Share Common Properties with Adult Stem Cells
Author Affiliations +
Abstract

There is little information on the function of epididymal basal cells. These cells secrete prostaglandins, can metabolize radical oxygen species, and have apical projections that are components of the blood-epididymis barrier. The objective of this study was to develop a reproducible protocol to isolate rat epididymal basal cells and to characterize their function by gene expression profiling. Integrin-alpha6 was used to isolate a highly purified population of basal cells. Microarray analysis indicated that expression levels of 552 genes were enriched in basal cells relative to other cell types. Among these genes, 45 were expressed at levels of 5-fold or greater. These highly expressed genes coded for proteins implicated in cell adhesion, cytoskeletal function, ion transport, cellular signaling, and epidermal function, and included proteases and antiproteases, signal transduction, and transcription factors. Several highly expressed genes have been reported in adult stem cells, suggesting that basal cells may represent an epididymal stem cell population. A basal cell culture was established that showed that these basal cells can differentiate in vitro from keratin (KRT) 5-positive cells to cells that express KRT8 and connexin 26, a marker of columnar cells. These data provide novel information on epididymal basal cell gene expression and suggest that these cells can act as adult stem cells.

Marion Mandon, Louis Hermo, and Daniel G. Cyr "Isolated Rat Epididymal Basal Cells Share Common Properties with Adult Stem Cells," Biology of Reproduction 93(5), (23 September 2015). https://doi.org/10.1095/biolreprod.115.133967
Received: 31 July 2015; Accepted: 1 September 2015; Published: 23 September 2015
JOURNAL ARTICLE
PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top