NEWS AND OPINION

EDITORIAL
379 The Right Fight for Biologists
Timothy M. Beardsley

VIEWPOINT
382 Biologists and Carbon Neutrality
David W. Oxtoby

FEATURE
384 Colony Collapse Disorder: Many Suspects, No Smoking Gun
Myrna E. Watanabe

EYE ON EDUCATION
389 Creating a New Breed of Biology Education Researchers
Brian Stagg

WASHINGTON WATCH
390 Big Bucks for Biosecurity Research—But Who’s Doing What?
Holly Menninger

AIBS NEWS
466 Plan to Attend! AIBS Annual Meeting, 12–13 May, to Examine Linkages among Infectious Diseases and Climate Change; AIBS Testifies about Need for Increased Funding for Biological Research; AIBS, ESA Coauthor Budget Analysis; AIBS Writes to Oklahoma Senate; ActionBioscience.org Seeks Lesson Writers; NEON Completes Selection of Candidate Sites; NEON Welcomes Its Director of Procurement and Contracts; Recent Executive Director’s Blog Entries Online at http://blogs.aibs.org/richardogrady; Recent Public Policy Reports Online at www.aibs.org

BIOBRIEFS
472 Case for Biological Origins of Language Grows Stronger
Edmund Blair Bolles

OVERVIEW ARTICLES

21ST CENTURY DIRECTIONS IN BIOLOGY
391 Engineering with Precision: Tools for the New Generation of Transgenic Crops
Lorena Moeller and Kan Wang

403 Freshwater Ecoregions of the World: A New Map of Biogeographic Units for Freshwater Biodiversity Conservation

415 Signal Cloaking by Electric Fish
Philip K. Stoddard and Michael R. Markham

426 Ready or Not, Garlic Mustard Is Moving In: Alliaria petiolata as a Member of Eastern North American Forests
Vikki L. Rodgers, Kristina A. Stinson, and Adrien C. Finzi

437 Plant Invasions in China: What Is to Be Expected in the Wake of Economic Development?
Ewald Weber and Bo Li
Cover: These maize callus cells have been manipulated to express green fluorescent protein fused to a bacterial signal peptide. Gold particles, coated with DNA encoding the fluorescent protein and the signal peptide, were fired into the cells using a “gene gun,” or biolistic particle delivery system. Some cells that have been bombarded this way take up and express the DNA-encoded proteins, and thus the technique is widely used in plant biotechnology. The signal peptide localizes the green fluorescent protein to specific regions of interest within the cell; in this image, the red bodies within the cells are the nuclei, stained with propidium iodide. In the article that begins on p. 391, Lorena Moeller and Kan Wang discuss a variety of techniques, including biolistic particle delivery, that are used in research on the production of improved genetically engineered crops such as maize. Photograph: Lorena Moeller and Kan Wang.
Deadly food riots in Haiti and Egypt, together with recent price-related unrest in several other countries, are disturbing reminders of the vulnerability of the poorest. Just as it is impossible to ascribe any single weather event to global warming, it is impossible to attribute any one instance of unrest to worldwide ecological trends. The importance of conflict, corrupt governance, and poor trade links in causing poverty—and thus food deprivation—is widely accepted. Yet it is also inescapable that global grain price increases of 80 percent during the past year, which are contributing to the unrest and undoing gains against poverty, are a reaction to combined demographic and environmental trends affecting agriculture. Drought in some parts of the world, combined with rapidly growing demand for meat, fish, fruits, wheat, and vegetables—especially in China and India—is putting upward pressure on feed-grain prices. The concurrent surge in oil prices is persuading more farmers to produce crops for biofuels. Both trends drive up prices for staple foods. United Nations officials see no respite in the foreseeable future. If rising food prices have a silver lining, it is that farmers should be able to invest more. Yet environmental constraints such as soil salinity, as well as the growing cost of nitrogenous fertilizers and market failures, limit growers in many places. With the world population expected to grow by a third before 2050 and climate change potentially exacerbating some threats, there is an obvious need to boost the efficiency of food production in a sustainable way.

Ideas from organic farming can help but by themselves are insufficient. New biotechnologies are critical in preventing more world hunger. Crops produced by direct manipulation of DNA, the subject of the article that begins on p. 391, have demonstrated enormous power to boost food supplies and reduce environmental damage. As authors Lorena Moeller and Kan Wang point out, such crops can provide improved resistance to stressors and pests of all sorts, as well as improved nutritional properties. More than 100 million hectares of these crops were planted worldwide in 2006 by over 10 million farmers. Most of these farmers are in developing countries, and they are chiefly cultivating pest-resistant cotton. Yet regulatory obstacles stemming from often-exaggerated fears impede the cultivation of genetically engineered food crops in much of the world. As with any new technology, there are risks, and scientists and governments should be on the lookout for them. So far, however, careful scrutiny has found no evidence of health dangers from growing or eating approved genetically engineered crops. Certainly, any ecological or health consequences of these products need to be monitored and prudently observed. But all crops are the result of some type of manipulation of DNA, and the activists who denounce direct manipulation of crops’ DNA should think hard about the human costs. They could act constructively to change particular agribusiness policies, or to respond to their pain at the loss of so much of nature, without opposing a much-needed technology. The rioters have a more physical pain, and all of science’s tools are needed to alleviate it.

TIMOTHY M. BEARDSLEY
Editor in Chief