Boris L. Blotto, Martín O. Pereyra, Taran Grant, Julián Faivovich
Bulletin of the American Museum of Natural History 443 (1), 1-156, (6 November 2020) https://doi.org/10.1206/0003-0090.443.1.1
Although studies of anuran hand and foot musculature began in the first half of the 19th century, all studies to date have been taxonomically or anatomically restricted in scope, and none has considered the diversity of autopodial myology in Anura as a whole. As a model for future comparisons, we thoroughly describe the hand and foot musculature of an arboreal species (the hylid Triprion petasatus), define the layers in which these muscles are arranged, and attribute presumed functions. On the basis of our myological analysis of 155 species representing 46 of the 54 currently recognized families and main clades of anurans, we describe 20 characters related to hand and foot muscles. Optimization of these characters on the most recent and inclusive phylogenetic hypothesis of Anura results in synapomorphies for several major clades (Bombinatoridae, Alytidae, Xenoanura + Acosmanura, Xenoanura, Pipidae, Acosmanura, Anomocoela, Scaphiopodidae, Pelodytidae + Pelobatidae + Megophryidae, Megophryidae, Neobatrachia, Heleophrynidae, Sooglossidae, Laurentobatrachia, Calyptocephalellidae, Myobatrachoidea, and Nobleobatrachia), including new, nonhomoplastic synapomorphies for clades previously supported only by molecular evidence and a few conflicting phenotypic characters (e.g., Acosmanura, Anomocoela, Neobatrachia). Additionally, we (1) address controversies regarding the homology of anuran and caudate muscles in the context of putative synapomorphies for Ascaphidae + Leiopelmatidae and its sister clade Lalagobatrachia; (2) evaluate a recently proposed terminology for anuran hand and foot musculature; (3) discuss the identities of several hand and foot muscles with problematic homologies; (4) establish a unified terminology for anuran hand and foot muscles, including a list of synonyms for all names employed in the literature; and (5) propose hypotheses for the origin of several myological novelties (neomorphs).