Translator Disclaimer
12 October 2016 Reclaimed soils, fertilizer, and bioavailable nutrients: Determining similarity with natural benchmarks over time
D.M. Howell, S. Das Gupta, B.D. Pinno, M.D. MacKenzie
Author Affiliations +
Abstract

Comparing functional similarity in reconstructed ecosystems with natural benchmarks can provide ecologically meaningful information to measure reclamation success. We examined nutrient supply rate using ion-exchange resins as a measure of ecosystem function in two oil sands reclaimed soils, viz. peat mineral mix (PMM) and forest floor mineral mix (FFMM), and measured fertilization effect on nutrient supply rates in these soils for three consecutive years contrasted with young-fire-disturbed and mature forest stands. Results indicated that nutrient profiles of reclaimed soils were significantly different than natural benchmarks. Phosphorus and potassium supply rates in reclaimed soils were up to 91% lower, whereas S, Ca, and Mg were, respectively, up to 95%, 62%, and 74% higher than in benchmark soils. The expected nutrient flush postfertilization was only apparent in N and P, but the transient effect levelled off the year after fertilization in most cases. Fertilization aligned the temporal trajectory of the nutrient profile in PMM similar to benchmark conditions indicating greater ecological benefit of fertilization than in FFMM. The findings from this study suggest that fertilization focusing on P and K is likely more ecologically appropriate for establishing natural ecosystem function on reclaimed soils in this region of the boreal forest.

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.
D.M. Howell, S. Das Gupta, B.D. Pinno, and M.D. MacKenzie "Reclaimed soils, fertilizer, and bioavailable nutrients: Determining similarity with natural benchmarks over time," Canadian Journal of Soil Science 97(2), 149-158, (12 October 2016). https://doi.org/10.1139/cjss-2016-0069
Received: 24 June 2016; Accepted: 1 October 2016; Published: 12 October 2016
JOURNAL ARTICLE
10 PAGES


Share
SHARE
KEYWORDS
apport d’oligoéléments
engrais
fertilizer
feu
fire
functional similarity
nutrient supply rates
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top