How to translate text using browser tools
1 July 2005 Delineation of the lectin site of the molecular chaperone calreticulin
Sten P. Thomson, David B. Williams
Author Affiliations +

Calreticulin (CRT) is a soluble molecular chaperone of the endoplasmic reticulum that functions to promote protein folding as well as to retain misfolded proteins. Similar to its membrane-bound paralog calnexin (CNX), CRT is a lectin that preferentially interacts with glycoproteins bearing Glc1Man5–9GlcNAc2 oligosaccharides. Although the lectin site of CNX has been delineated through X-ray crystallographic and mutagenic studies, the corresponding site for CRT has not been as well characterized. To address this issue, we attempted to construct lectin-deficient CRT mutants, using the structure of CNX as a guide to identify potential oligosaccharide-binding residues. Mutation of 4 such CRT residues (Y109, K111, Y128, D317) completely abrogated oligosaccharide binding. In contrast, mutation of CRT residues M131 and D160, which correspond to important residues in the lectin site of CNX, had no effect on oligosaccharide binding. These findings suggest that the organization of the lectin site in CRT largely resembles that of CNX but is not identical. The deficiency in oligosaccharide binding by the mutants was not due to misfolding because they exhibited wild-type protease digestion patterns, were capable of binding the thiol oxidoreductase ERp57, and functioned just as efficiently as wild-type CRT in suppressing the aggregation of the nonglycosylated substrate citrate synthase. However, they were impaired in their ability to suppress the aggregation of the glycosylated substrate jack bean α-mannosidase. This provides the first direct demonstration of the importance of CRT's lectin site in suppressing the aggregation of nonnative glycoproteins.

Sten P. Thomson and David B. Williams "Delineation of the lectin site of the molecular chaperone calreticulin," Cell Stress & Chaperones 10(3), 242-251, (1 July 2005).
Received: 10 April 2005; Accepted: 1 May 2005; Published: 1 July 2005

This article is only available to subscribers.
It is not available for individual sale.

Get copyright permission
Back to Top