The recombinant nucleopolyhedrovirus of Autographa californica Speyer (AcMNPV-AaIT) expressing the paralyzing toxin of scorpions (Androtoctonus australis Hector) kills caterpillars 30% faster than wild-type (wt) AcMNPV, and shows a great deal of promise as a bioinsecticide. Although it is generally believed that genetically modified organisms are less fit than their derived wild type and will not persist in the environment, a thorough assessment of the ecological risks associated with the release of AcMNPV-AaIT must be conducted before its commercialization. In this study, we focus on one aspect and compare the fitness of AcMNPV-AaIT and wt-AcMNPV during intra-host competition. Cabbage loopers (Trichoplusia ni Hübner) were synchronously or asynchronously infected with wt-AcMNPV and AcMNPV-AaIT, and the polymerase chain reaction was used to monitor the outcome of intra-host competition. There was no indication that AcMNPV-AaIT was less fit than wt-AcMNPV when T. ni were synchronously fed equal doses of each NPV. Serially passing the occlusion bodies had little effect on the persistence of AcMNPV-AaIT. After seven passages, the recombinant virus was found alone or with wt-AcMNPV in 71% (12/17) of replicates whereas wt-AcMNPV occurred alone or mixed in 88% (15/17) of replicates. Dose and synchrony of infection both affected the outcome of intra-host competition. The virus with the highest dose and the first one given to T. ni had a significant competitive advantage. Finally, the AaIT insert appeared to be stable because there was no evidence that it got deleted from the recombinant genome even after AcMNPV-AaIT was serially passed seven times in T. ni. As a complementary study, we also examined intra-host competition between two wild type NPVs, wt-AcMNPV and the single nucleocapsid (S) nucleopolyhedrovirus of T. ni (TnSNPV). Our results suggest that the two viruses are equally fit during intra-host competition. Serially passing the occlusion bodies did not influence the outcome but NPV dose and synchrony of infection were again strong determinants of intra-host competition.
Translator Disclaimer
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
fitness
genetically modified organism
intra-host competition
mixed infections
nucleopolyhedrovirus
risk assessment