Stefan R. Schulze, Stanley A. Rice, Joseph L. Simon, Stephen A. Karl
Evolution 54 (4), 1247-1259, (1 August 2000) https://doi.org/10.1554/0014-3820(2000)054[1247:EOPATB]2.0.CO;2
KEYWORDS: Larval life history, lecithotrophy, mitochondrial cytochrome oxidase I, planktotrophy, Spionidae
Invertebrate interspecific developmental patterns can be highly variable and, taxonomically, are considered only weakly constrained. Intraspecifically, some invertebrate species possess multiple developmental modes—a condition known as poecilogony. Closer examination of most putative poecilogenous species, however, has not supported poecilogony, but rather has uncovered hidden or cryptic species. The polychaete Streblospio benedicti is a well-known, poecilogenous species found along the coast of North America. We collected mitochondrial cytochrome subunit I DNA sequence data from 88 individuals taken from 11 locations along the Atlantic, Gulf, and Pacific Coasts of the United States to provide a phylogenetic framework from which to interpret intraspecific variation in larval life history and brooding structure morphology in this species. Our results are consistent with a recent revision of the species into two separate species: S. benedicti, a pouched brooding form distributed along the Atlantic and Pacific Coasts, and S. gynobranchiata, a branchiate brooding form in the Gulf of Mexico. Contrary to the redescription, S. benedicti is paraphyletic because the pouched brooding population in Vero Beach, Florida shows strong genetic affinity with Gulf of Mexico populations (S. gynobranchiata). However, S. benedicti is a true poecilogenous species, with both lecithotrophic and planktotrophic individuals possessing identical mitochondrial DNA haplotypes. Crossbreeding experiments further support the molecular phylogeny with reproductive isolation demonstrated between, but not within, the major phylogenetic clades consistent with the previously described species. The genetic break near Vero Beach, Florida, corresponds to a well-known phylogeographic boundary, but the estimated time of separation for the Streblospio spp., approximately 10 million years before present, predates all other known phylogeographic subdivisions in this area. This suggests that biogeographic sundering in this region is a recurrent event. Divergence times within the major Streblospio spp. clades are recent and indicate that changes in larval life history as well as brooding structure morphology are highly plastic and can evolve rapidly.
Corresponding Editor: R. Burton