Translator Disclaimer
1 April 2006 SEX RATIO, LIFE-HISTORY INVARIANTS, AND PATTERNS OF SEX CHANGE IN A FAMILY OF PROTANDROUS GASTROPODS
Author Affiliations +
Abstract

Application of optimality theory to the evolution of life histories has been broadly successful in predicting the conditions favoring sex change, the type of change, and the timing of such changes. The size advantage hypothesis predicts that the optimal size at which an individual should change sex is a function of its size and the size and sex of its potential mates. I collected data on the size, sex, and grouping of individuals of 27 populations of 19 species of the calyptraeids, a family of protandrous marine gastropods that includes Crepidula. These data are used to test the following predictions about variation in size at sex change: (1) sex ratio is biased toward the first sex; (2) the ratio of the size at sex change to the maximum size is a life-history invariant; and (3) species that form variable-sized groups or stacks have more variation in size at sex change than species that show less variation in stack formation. Across all 19 species, sex ratio was not significantly more often biased toward the first sex than it was toward the second sex, although sex ratios were significantly male biased more often than they were significantly female biased. Sex ratios ranged from 0.05 to 0.91, and this variation was related to mode of development, skew in size distribution, and frequency of stacking, but not with maximum body size. There was little evidence that the ratio of size at sex change and maximum size is invariant. There is evidence that one of the main underlying assumptions of this life-history invariant, that male fertility increases with the same function of size in all species, is invalid for calyptraeids and probably for other animals. Finally, species that form larger stacks or mating groups had more variation in size at sex change within a population than species that were generally solitary. These results suggest that information about individual groupings should be included in predictions of life-history theory and that more information about the relationship between male fitness and size is also needed.

Rachel Collin "SEX RATIO, LIFE-HISTORY INVARIANTS, AND PATTERNS OF SEX CHANGE IN A FAMILY OF PROTANDROUS GASTROPODS," Evolution 60(4), 735-745, (1 April 2006). https://doi.org/10.1554/05-201.1
Received: 12 April 2005; Accepted: 27 January 2006; Published: 1 April 2006
JOURNAL ARTICLE
11 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top