How to translate text using browser tools
1 December 2007 PLASTICITY AND ENVIRONMENT-SPECIFIC COVARIANCES: AN INVESTIGATION OF FLORAL-VEGETATIVE AND WITHIN FLOWER CORRELATIONS
Marcus T. Brock, Cynthia Weinig
Author Affiliations +
Abstract

Floral traits are commonly thought to be more canalized than vegetative ones. In addition, floral and vegetative traits are hypothesized to be genetically decoupled, enabling vegetative structures to respond plastically to environmental heterogeneity, and to evolve in response to selection without disrupting the reproductive function of flowers. To test these hypotheses, we evaluate the genetic architecture of floral and vegetative traits in natural populations of Arabidopsis thaliana raised under variable light-quality environments. Plants were grown either under high or low ratios of red to far-red (R:FR) light, an aspect of light quality that varies with neighbor proximity and regulates competitive shade-avoidance responses. Across environments, we detected significant genetic variation for the average expression of all measured floral traits (petal length and width, stamen length, pistil length, stigma-anther separation, and exsertion of both the stamen and pistil beyond the corolla). Light quality significantly influenced the absolute size of several floral traits as well as the allometry (i.e., relative scaling) of all floral traits, and genotypes differed in the plasticity of floral traits to the light treatments. Exposure to low relative to high R:FR resulted in significantly greater elongation in the vegetative trait, petiole length, and genotypes again differed in the plasticity of this trait to R:FR. Consistent with prior studies, most floral traits were less plastic than the vegetative trait; herkogamy (i.e., stigma-anther separation) was the exception and expressed more variable trait values across environments than petiole length, apparently as a consequence of the independent responses of stamens and pistils. Flowers also showed strong phenotypic integration; genotypic correlations were significantly positive among floral traits within each light treatment. Although floral-vegetative correlations were not significant in the high R:FR light treatment, significant correlations were detected between petal traits, pistil length, and petiole length under low R:FR, in contrast to the widely held hypothesis that floral and vegetative traits are genetically independent. Finally, we detected selection for reduced herkogamy in the low R:FR light treatment. The observed correlation between functional trait groups suggest that vegetative plasticity may affect the expression of floral traits in some environments, and that environment-specific constraints may exist on the evolution of floral and vegetative traits.

Marcus T. Brock and Cynthia Weinig "PLASTICITY AND ENVIRONMENT-SPECIFIC COVARIANCES: AN INVESTIGATION OF FLORAL-VEGETATIVE AND WITHIN FLOWER CORRELATIONS," Evolution 61(12), 2913-2924, (1 December 2007). https://doi.org/10.1111/j.1558-5646.2007.00240.x
Received: 31 October 2006; Accepted: 30 July 2007; Published: 1 December 2007
JOURNAL ARTICLE
12 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
Arabidopsis thaliana
floral morphology
floral-vegetative correlation
phenotypic integration
Plasticity
R:FR
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top