Ecological differentiation is a major contributor to the generation and maintenance of biological diversity. We investigated habitat differentiation between and within sites in the fully cross-fertile and hybridizing Silene dioica and S. latifolia using amplified fragment length polymorphisms (AFLP) profiles and corresponding vegetation relevés around individual plants. Nineteen study sites in the Swiss Alps included pure sites and contact sites (both taxa present within 30 m). In pure sites and at contact sites, the two taxa showed consistently differentiated AFLP banding patterns across regions but few discriminating bands. This indicates that although the two taxa are weakly differentiated, current introgression has not led to genome-wide admixture. Only three putative early generation hybrids were detected at contact sites. The habitats of the two taxa differed between pure sites with S. dioica occurring in moister, colder, and less-disturbed sites than S. latifolia. However, asymmetric habitat overlap was evident within contact sites found in intermediate conditions that were more similar to S. latifolia sites. This situation might favor introgression from S. dioica into S. latifolia. Evidence for habitat–genotype associations within contact sites was weak making habitat-mediated selection against intermediate phenotypes of hybrids unlikely in the contact sites investigated. We suggest that other reproductive barriers together with dispersal limitation contribute to the rarity of early generation hybrids.