A stochastic computer simulation model was created to compare the combined effects of selection and genetic drift on the dynamics of S-alleles under full sporophytic self-incompatibility (SI) versus transient SI, a form of partial SI in which flowers become self-compatible as they age. S-alleles were lost more rapidly with transient than with full SI, as is expected with weakened frequency-dependent selection. Based on these results, equilibrium S-allele diversity is expected to be lower with partial SI for populations of comparable size and migration rates. Consistent with model results, a comparison of the proportion of incompatible crosses in full diallel experiments for a fully SI and a transiently SI species in the annual genus Leptosiphon suggests that S-allele diversity is lower in the partially SI species. Results of the simulation model indicate that the transmission advantage of self-fertilization can have complex effects on S-allele dynamics in partial SI systems.
How to translate text using browser tools
1 August 2008
Transient Si and the Dynamics of Self-Incompatibility Alleles: A Simulation Model and Empirical Test
Carol Goodwillie
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Evolution
Vol. 62 • No. 8
August 2008
Vol. 62 • No. 8
August 2008
allele frequency
computer simulation
frequency-dependent selection
mating system evolution
partial self-incompatibility