Visible genetic polymorphism is a common feature of many species. In most cases, the mechanism(s) underlying the maintenance of such variation remain obscure although apostatic selection has often been suggested. Here, we explore individual-based evolutionary models to understand what features of predator-prey relationships may lead to patterns of exuberant polymorphism similar to those observed in the wild. When all morphs are equally visible, the number of evolved morphs increases with the strength of apostatic selection although even with powerful selection the number morphs is still relatively small. The introduction of dietary wariness increases the number of morphs substantially, even when apostatic selection is absent. When one morph is more cryptic the number of evolved morphs is fewer. The cryptic morph reaches high frequency in the population and other morphs are each at lower frequencies. Decreasing the predation intensity enhances the number of evolved morphs in all models. Dietary wariness is a critical factor missing from earlier models and it may provide a general solution to the problem of polymorphisms involving many morphs. Apostatic selection is shown to be neither a necessary, nor a sufficient, requirement for the maintenance of exuberant polymorphisms.
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Evolution
Vol. 63 • No. 10
October 2009
Vol. 63 • No. 10
October 2009
dietary conservatism
massive polymorphism
neophobia
search image
spiders
Theridion californicum
Theridion grallator