Phenotypic selection is widely recognized as the primary cause of adaptive evolution in natural populations, a fact that has been documented frequently over the last few decades, mainly in morphological and life-history traits. The energetic definition of fitness predicts that natural selection will maximize the residual energy available for growth and reproduction, suggesting that energy metabolism could be a target of selection. To address this problem, we chose the garden snail. Helix asperse (Cornu aspersum). We performed a seminatural experiment for measuring phenotypic selection on standard metabolic rate (SMR), the minimum cost of maintenance in ectotherm organisms. To discount selection on correlated traits, we included two additional whole-organism performance traits (mean speed and maximum force of dislodgement). We found a combination of linear (negative directional selection, β = -0.106 ± 0.06; P = 0.001) and quadratic (stabilizing selection, γ = -0.012 ± 0.033; P = 0.061) selection on SMR. Correlational selection was not significant for any possible pair of traits. This suggests that individuals with average-to-reduced SMRs were promoted by selection. To the best of our knowledge, this is the first study showing significant directional selection on the obligatory cost of maintenance in an animal, providing support for the energetic definition of fitness.
How to translate text using browser tools
1 April 2009
Natural Selection Reduces Energy Metabolism in the Garden Snail, Helix aspersa (Cornu aspersum)
Paulina Artacho,
Roberto F. Nespolo
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Evolution
Vol. 63 • No. 4
April 2009
Vol. 63 • No. 4
April 2009
Directional selection
Energy budget
fitness component
performance
standard metabolic rate
survival