Experimental evolution, particularly experimental sexual selection in which sexual selection strength is manipulated by altering the mating system, is an increasingly popular method for testing evolutionary theory. Concerns have arisen regarding genetic diversity variation across experimental treatments: differences in the number and sex ratio of breeders (effective population size; Ne) and the potential for genetic hitchhiking, both of which may cause different levels of genetic variation between treatments. Such differences may affect the selection response and confound interpretation of results. Here we use both census-based estimators and molecular marker-based estimates to empirically test how experimental evolution of sexual selection in Drosophila pseudoobscura impacts Ne and autosomal genetic diversity. We also consider effects of treatment on X-linked Nes, which have previously been ignored. Molecular autosomal marker-based estimators indicate that neither Ne nor genetic diversity differs between treatments experiencing different sexual selection intensities; thus observed evolutionary responses reflect selection rather than any confounding effects of experimental design. Given the increasing number of studies on experimental sexual selection, we also review the census Nes of other experimental systems, calculate X-linked Ne, and compare how different studies have dealt with the issues of inbreeding, genetic drift, and genetic hitchhiking to help inform future designs.
How to translate text using browser tools
1 July 2009
A Test and Review of the Role of Effective Population Size on Experimental Sexual Selection Patterns
Rhonda R. Snook,
Lena Brüstle,
Jon Slate
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Evolution
Vol. 63 • No. 7
July 2009
Vol. 63 • No. 7
July 2009
effective population size
experimental evolution
GENETIC DRIFT
selection
sexual conflict