Circulating filarial proteins elicit strong immunologic reactions in humans leading to the chronic manifestations in human lymphatic filariasis such as lymphatic occlusion, fibrosis, edema, and in some cases, tropical pulmonary eosinophilia. Our earlier studies, in vitro, conclusively prove that filarial parasitic sheath proteins induce apoptosis in HEp2 cells, an epithelial cell line, by a pathway inhibitable by bcl2. The present findings provide evidence that c-myc activation triggers apoptosis in HEp2 cells and that it is also responsible for the burst of abortive proliferation at 6 d of treatment of HEp2 bcl2 cells that overexpress bcl2, with filarial parasitic sheath protein, demonstrating the interplay between the two genes c-myc and bcl2, wherein bcl2 acts by restoring the prosurvival signal to c-myc and keeping its apoptotic tendency in check. This study also indicates that bcl2 upregulates c-H-ras, engaging ras to bring about the suppression of apoptosis through protein tyrosine kinase elevation, thus promoting the survival of the HEp2 bcl2 cells. In addition to the activation of these “signal switches,” we also observe that these cells release cytokines like IL-6 and IL-8 through the upregulation of c-fos, when exposed to filarial parasitic sheath protein, reflecting on the immunomodulatory capacity of the epithelium to elicit a host immune response by setting up a chemotactic gradient, attracting inflammatory cells to the site of infection.
Translator Disclaimer
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
In Vitro Cellular & Developmental Biology - Animal
Vol. 36 • No. 8
September 2000
Vol. 36 • No. 8
September 2000
apoptotic signaling
interleukins
pathogenesis
proto-oncogenes
tyrosine kinase