GERALD A. COLVIN, JEAN-FRANÇOIS LAMBERT, JANE E. CARLSON, CHRISTINA I. McAULIFFE, MEHRDAD ABEDI, PETER J. QUESENBERRY
In Vitro Cellular & Developmental Biology - Animal 38 (6), 343-351, (1 June 2002) https://doi.org/10.1290/1071-2690(2002)038<0343:ROEAAC>2.0.CO;2
KEYWORDS: STLV, slow turning lateral vessel, RWV, rotating wall vessel, microgravity bioreactor, bone marrow transplantation, hematopoiesis
Space flight with associated microgravity is complicated by “astronaut's anemia” and other hematologic abnormalities. Altered erythroid differentiation, red cell survival, plasma volume, and progenitor numbers have been reported. We studied the impact of microgravity on engraftable stem cells, culturing marrow cells in rotary wall vessel (RWV) culture chambers mimicking microgravity and in normal gravity nonadherent Teflon bottles. A quantitative competitive engraftment technique was assessed under both conditions in lethally irradiated hosts. We assessed 8-wk engraftable stem cells over a period spanning at least one cell cycle for cytokine (FLT-3 ligand, thrombopoietin [TPO], steel factor)–activated marrow stem cells. Engraftable stem cells were supported out to 56 h under microgravity conditions, and this support was superior to that seen in normal-gravity Teflon bottle cultures out to 40 h, with Teflon bottle culture support superior to RWV from 40 to 56 h. A nadir of stem cell number was seen at 40 h in Teflon and 48 h in RWV, suggesting altered marrow stem cell cycle kinetics under microgravity. This is the first study of engraftable stem cells under microgravity conditions, and the differences between microgravity and normal gravity cultures may present opportunities for unique future stem cell expansion strategies.