In vitro culture of hairy roots of Phyllanthus amarus induced by Agrobacterium rhizogenes was established. Their growth and ability for in vitro inactivation of hepatitis B virus surface antigen was studied and compared with adventitious roots grown in vitro. The selected hairy root clone HR-1 was capable of growing at a very fast rate, and an approximately 900-fold increase in weight of root biomass was achieved after 4 wk of culture in hormone-free quarter-strength liquid Murashige and Skoog medium with continuous agitation. Non-transformed roots cultured in the presence of 1.0 mg l−1 (5.71 μM) indole-3-acetic acid increased by 330-fold. The immuno-inactive property of roots was maximal in the crude extract. The hairy roots were shown to possess 85% inhibition (in contrast to 15% in the control) in binding of hepatitis B surface antigen (HBsAg) to its antibody (anti-HBs) after 24 h of incubation with HbsAg-positive sera in vitro at 37°C. Out of three fractions selected on the basis of molecular weight components of the extract, the Fraction III containing comparatively lower molecular weight substances (≤3500) yielded the highest activity. The extract from non-transformed roots was found to possess similar efficiency (87% inhibition). The levels of activity in both types of in vitro-raised roots were higher than those of naturally occurring roots and leafy shoots. The ability of P. amarus hairy root cultures to yield high biomass with the anti-viral property at high levels may provide an alternative source of raw material for more detailed study in the field of pharmaceutical research.
How to translate text using browser tools
1 September 2004
DEVELOPMENT OF A POTENT IN VITRO SOURCE OF PHYLLANTHUS AMARUS ROOTS WITH PRONOUNCED ACTIVITY AGAINST SURFACE ANTIGEN OF THE HEPATITIS B VIRUS
RAJASRI BHATTACHARYYA,
SABITA BHATTACHARYA
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
In Vitro Cellular and Developmental Biology - Plant
Vol. 40 • No. 5
September 2004
Vol. 40 • No. 5
September 2004
antiviral activity
Hairy root
hepatitis B virus surface antigen
non-transformed root
Phyllanthus amarus