Translator Disclaimer
29 September 2020 Neural Network Ship PID Control and Simulation Based on Grey Prediction
Author Affiliations +
Abstract

Song, Q.H. and Wang, D.D., 2020. Neural network ship PID control and simulation based on grey prediction. In: Al-Tarawneh, O. and Megahed, A. (eds.), Recent Developments of Port, Marine, and Ocean Engineering. Journal of Coastal Research, Special Issue No. 110, pp. 299–303. Coconut Creek (Florida), ISSN 0749-0208.

Traditional PID is difficult to be applied in large inertial system. It is determined by a large number of engineering experiments, which brings great limitations to the practical application of PID; and the traditional PID control algorithm cannot be applied to the load change, so the control results is always not good enough to be used in the precision requirement. In the paper, the grey prediction control and neural network are combined, and a neural network ship PID control strategy based on grey prediction is proposed, since the grey prediction algorithm needs a small amount of data and small computation load. The simulation results show that the new ship PID self-tuning algorithm is feasible and effective. It can be used in the change of the target parameters, and has strong anti-interference and reliability.

©Coastal Education and Research Foundation, Inc. 2020
Qinghua Song and Dandan Wang "Neural Network Ship PID Control and Simulation Based on Grey Prediction," Journal of Coastal Research 110(sp1), 299-303, (29 September 2020). https://doi.org/10.2112/JCR-SI110-070.1
Received: 4 April 2020; Accepted: 26 May 2020; Published: 29 September 2020
JOURNAL ARTICLE
5 PAGES


SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top