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ABSTRACT

Amante, C.J., 2018. Estimating coastal digital elevation model uncertainty. Journal of Coastal Research, 34(6), 1382–
1397. Coconut Creek (Florida), ISSN 0749-0208.

Integrated bathymetric–topographic digital elevation models (DEMs) are representations of Earth’s solid surface that
extend across the coastal land–water interface. DEMs are fundamental to the modeling of coastal processes, including
tsunami, storm-surge, and sea-level-rise inundation. Vertical errors in coastal DEMs are deviations in elevation values
from the actual seabed or land surface, which originate from the (1) elevation measurements, (2) datum transformation
that converts bathymetric and topographic measurements to a common vertical reference system, (3) spatial resolution of
the DEM, and (4) interpolative gridding technique that estimates elevations in areas unconstrained by measurements.
The magnitude and spatial distribution of the vertical errors are typically unknown, and a DEM uncertainty surface is a
statistical assessment of the likely magnitude of these errors. The National Oceanic and Atmospheric Administration
National Centers for Environmental Information develops DEMs for United States’ coastal communities. This study
describes a methodology to derive uncertainty surfaces that estimate coastal DEM vertical errors at the DEM cell–level.
A coastal DEM south of Sarasota, Florida is the case study for deriving uncertainty surfaces. Results indicate that large
vertical uncertainty exists in deeper waters offshore with sparse echo-sounder measurements, and small vertical
uncertainty exists on flat terrains with dense light detection and ranging measurements. The estimated uncertainty can
be propagated into the modeling of coastal processes that utilize DEMs by deriving numerous plausible DEM realizations
within the uncertainty bounds. The numerous DEMs realizations can then produce an ensemble of coastal modeling
results, and in turn, better-informed coastal management decisions.

ADDITIONAL INDEX WORDS: Bathymetry, topography, measurement uncertainty, VDatum uncertainty, interpolation
uncertainty, spatial resolution, cell-level uncertainty, uncertainty surface.

INTRODUCTION
Integrated bathymetric–topographic digital elevation models

(DEMs) are representations of Earth’s solid surface that extend

across the coastal land–water interface by seamlessly merging

subaerial topography with adjacent bathymetry (Danielson et

al., 2016; Eakins and Grothe, 2014; Gesch and Wilson, 2001;

Thatcher et al., 2016). The National Oceanic and Atmospheric

Administration (NOAA) National Centers for Environmental

Information (NCEI) develops DEMs for United States’ coastal

communities to support numerous coastal modeling efforts,

including the modeling of tsunami propagation and coastal

inundation (Eakins and Taylor, 2010).

Vertical errors in DEMs are defined in this manuscript as

deviations in elevation values from the actual seabed or land

surface (Hunter and Goodchild, 1997; Li et al., 2018). Such

vertical errors originate from numerous sources, including the

(1) elevation measurements (e.g., sonar, light detection and

ranging [LIDAR]), (2) datum transformation that converts

bathymetric and topographic measurements to a common

vertical reference system, (3) spatial resolution of the DEM,

and (4) interpolative gridding technique (e.g., spline, kriging)

that estimates elevations in areas unconstrained by measure-

ments. The magnitude and spatial distribution of DEM vertical

errors are typically unknown. DEM uncertainty represents the

lack of knowledge of the vertical errors, and a DEM uncertainty

surface is a statistical assessment of the likely magnitude and

spatial distribution of these errors (Hunter and Goodchild,

1997; International Hydrographic Organization, 2008; Li et al.,

2018; Wechsler, 2007). Accuracy is defined in this manuscript

as a general term for the agreement of values to known or

accepted values (Amante and Eakins, 2016), and is typically

assessed by statistical measures, such as root mean square

error (RMSE).

DEM uncertainty affects the fidelity of coastal process

modeling, such as tsunami propagation and coastal inundation

(e.g., Gesch, 2013; Hare, Eakins, and Amante, 2011; Leon,

Heuvelink, and Phinn, 2014). Consequently, it is important to

estimate and incorporate DEM uncertainty in the modeling of

coastal processes. The estimated uncertainty can be propagat-

ed into the modeling of coastal processes that utilize DEMs by

deriving numerous plausible DEM realizations within the

uncertainty bounds (e.g., Leon, Heuvelink, and Phinn, 2014).

The numerous DEM realizations can then produce an

ensemble of coastal modeling results, and in turn, better-

informed coastal management decisions. Estimating the

spatially varying DEM uncertainty also aids in prioritizing

future elevation data collection, which will subsequently also

improve the fidelity of coastal process modeling.

Numerous studies address uncertainty in topographic DEMs

(e.g., Bater and Coops, 2009; Goulden et al., 2016; Leon,

Heuvelink, and Phinn, 2014; Spaete et al., 2011; Su and Bork,

2006) and uncertainty in bathymetric DEMs (e.g., Amante and

Eakins, 2016; Calder, 2006; Elmore et al., 2012; Jakobsson,
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Calder, and Mayer, 2002), but there is currently a lack of

research on deriving uncertainty surfaces for coastal DEMs

developed from multiple bathymetric and topographic data sets

of disparate quality and age. Jakobsson, Calder, and Mayer

(2002) and Calder (2006) create uncertainty surfaces that

reflect potential measurement uncertainty for bathymetric

data sets from different time periods, and the interpolation

uncertainty between sparse measurements. However, these

studies are limited in the context of coastal DEMs as they do

not integrate bathymetric and topographic data sets into a

seamless DEM, and do not consider the effect of the DEM

spatial resolution on cell-level uncertainty. Zhang et al. (2015)

improve the accuracy of coastal DEMs that integrate bathy-

metric and topographic data sets by incorporating the relative

accuracy of three data sources to optimize the weighting of each

data set in the interpolation process, but their research also

does not consider the effect of the DEM spatial resolution on

cell-level uncertainty. Furthermore, Zhang et al. (2015) do not

derive an accompanying uncertainty surface. To the best of the

author’s knowledge, there is no published research on

developing coastal DEMs from multiple topographic and

bathymetric data sets of disparate quality and age with

accompanying uncertainty surfaces that estimate potential

DEM vertical errors at the cell-level that originate from the (1)

elevation measurements, (2) vertical datum transformation, (3)

DEM spatial resolution, and (4) interpolation technique.

Measurement Uncertainty
A primary contribution to DEM uncertainty is the uncer-

tainty of the elevation measurements constraining the model.

In the bathymetric realm, the International Hydrographic

Organization’s (IHO) standards for hydrographic surveys

provide guidance on the allowable magnitude of depth

measurement uncertainty that results from data collection

and processing (Hare, Eakins, and Amante, 2011; Internation-

al Hydrographic Organization, 2008). The IHO determines

various orders of standards on the basis of the importance of

under-keel clearance, with stricter standards, i.e. less allow-

able vertical uncertainty, in cases where under-keel clearance

is critical (e.g., shipping lanes in shallow waters). All standards

are provided as a function of depth, resulting in larger

allowable uncertainty in deeper waters. Sources of probabilistic

measurement uncertainty for modern single-beam and multi-

beam echo sounders originate from the platform, sensor,

environment, integration, and calibration (Hare, Eakins, and

Amante, 2011). Other technology, such as LIDAR utilizing

blue-green wavelengths (~532 nm), can penetrate shallow,

clear water to measure depths near the land–water interface

(Gao, 2009; Irish and Lillycrop, 1999). The uncertainty of

bathymetric LIDAR is also typically estimated on the basis of

the depth, with larger uncertainty in deeper waters, in

accordance to IHO standards (Costa, Battista, and Pittman,

2009; International Hydrographic Organization, 2008).

Legacy bathymetric data sets have additional uncertainty

including digitization, shoal biasing, and morphologic change,

and estimating the uncertainty of legacy data sets creates

additional challenges (Calder, 2006; Elmore et al., 2012; Hare,

Eakins, and Amante, 2011; Jakobsson, Calder, and Mayer,

2002; Marks and Smith, 2008). Jakobsson, Calder, and Mayer

(2002) estimate the vertical uncertainty of bathymetric data on

the basis of the navigation system and depth measurement

instrumentation (i.e. echo sounder) described in the metadata,

and provide a worst-case scenario if the metadata are

unavailable. Depth measurement uncertainty can also be

estimated by comparison with presumed higher-accuracy data

sets (Calder, 2006; Marks and Smith, 2008). Marks and Smith

(2008) determine that the worst-case scenario (i.e. 95th

percentile error) is approximately five times larger in pre-

1969 sonar data than in post-1968 sonar data, and derive

separate models to estimate depth measurement uncertainty

on the basis of the depth and terrain slope for the two discrete

time periods.

NOAA disseminates categorical zones of confidence (ZOC)

with their nautical charts that are determined primarily by the

age of the data that inform the chart depths (S. Legeer,

personal communication). Some areas of nautical charts date

back to the 19th century, in which the technology of the day (i.e.

lead line surveys) results in large uncertainty in the chart

depths. The ZOCs are also based on water depth, resulting in

larger measurement uncertainty in deeper waters. More

information on depth measurement uncertainty, including

the IHO standards and NOAA ZOCs, is provided in Calder

(2006), International Hydrographic Organization (2008), and

Hare, Eakins, and Amante (2011).

In the topographic realm, LIDAR technology typically

utilizes near-infrared wavelengths (~1064 nm) to measure

elevations of Earth’s surface (Heritage and Large, 2009).

Postcollection filtering is performed to remove LIDAR returns

from vegetation and buildings, and the remaining ground

returns are utilized in NOAA DEMs to represent the bare-

earth conditions. The vertical accuracy of topographic LIDAR is

often provided in the data set’s metadata by a global statistic,

such as RMSE. The RMSE represents the accuracy of a LIDAR

data set containing millions of elevation measurements, but is

commonly derived using a relatively small number (~tens to

hundreds) of colocated ground control points. The number of

ground control points represents an extremely small percent-

age of the LIDAR data set, which brings into question the

robustness of the accuracy assessment (Wechsler, 2007).

Furthermore, a single, global metric of accuracy is limited as

LIDAR accuracy is correlated with land cover and terrain

(Bater and Coops, 2009; Goulden et al., 2016; Leon, Heuvelink,

and Phinn, 2014; Spaete et al., 2011; Su and Bork, 2006). For

example, LIDAR elevation measurements are typically biased

toward higher elevations than the actual bare-earth surface in

densely vegetated, coastal marshes because of poor laser pulse

penetration (Hladik and Alber, 2012; Schmid, Hadley, and

Wijekoon, 2011). LIDAR errors are also typically larger in

areas of steep terrain, as any horizontal positional errors can

result in large vertical errors (Goulden et al., 2016; Spaete et

al., 2011; Su and Bork, 2006). Therefore, the estimated vertical

uncertainty in DEMs constrained by LIDAR measurements

should also vary spatially.

Vertical Datum Transformation Uncertainty
The development of integrated bathymetric–topographic

DEMs typically requires the transformation of bathymetric

and topographic measurements to a common vertical reference.
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Bathymetric data are usually referenced vertically to a tidal

datum, such as mean lower low water (MLLW; Gill and

Schultz, 2001), whereas topographic data are usually refer-

enced to an orthometric datum, such as the North American

Vertical Datum of 1988 (NAVD 88). Tidal datums are based on

local observations of tidal variations over a period of time

(Parker et al., 2003), whereas orthometric datums are based on

Earth’s gravity field (i.e. the geoid). For example, MLLW is

defined as the arithmetic mean of the lower low water heights

of the tide observed at a specific location over a 19-year period

known as the National Tidal Datum Epoch (Gill and Schultz,

2001). A false vertical offset can result at the coastline where

bathymetric and topographic data sets converge; if the data

sets are not transformed to a common vertical reference,

however, the transformation of bathymetric and topographic

measurements to a common vertical datum adds additional

vertical uncertainty into the DEM (Cooper and Chen, 2013;

Gesch, 2013). The uncertainty originates from a combination of

inaccuracies in the gridded fields used in the transformation,

including the geoid, and in the source observation data used in

the vertical datum transformation software, such as the

elevation of the tidal datums or the height of the orthometric

datum (NOAA, 2016). The incorporation of DEM uncertainty

that originates from the vertical datum transformation is

considered in multiple studies that evaluate the uncertainty of

future flood risk due to sea-level rise (Gesch, 2013; Mitsova,

Esnard, and Li, 2012; Schmid, Hadley, and Waters, 2013).

DEM Spatial Resolution and Cell-Level Measurement
Uncertainty

Previous studies (e.g., Gao, 1997; Li, 1994; Shi, Wang, and

Tian, 2014; Wechsler and Kroll, 2006) investigated the effect of

DEM spatial resolution (i.e. cell size) on DEM vertical errors,

and found that vertical errors generally increase at coarser

resolutions (i.e. larger cell sizes). These previous studies

quantified the errors by comparing the DEM elevation values

to higher-accuracy, discrete ground control points, or a higher-

resolution DEM. The ability of a DEM to accurately represent a

terrain depends on the match between the DEM resolution and

the spatial characteristics of the terrain (Fisher and Tate, 2006;

Theobold, 1989). For example, a coarse-resolution DEM can

more accurately represent a gently sloping beach than a steep

beach cliff. Most current studies focus on the effect of DEM

spatial resolution on the magnitude of vertical errors, and don’t

investigate the effect of DEM spatial resolution on the number

of measurements per DEM grid cell and related information on

subcell terrain variance. Hell and Jakobsson (2011) implement

a multiple spatial resolution gridding approach to reduce

interpolation artifacts in areas of sparse measurements, and

subsequently improve the quality of the DEM, but do not

produce uncertainty estimates using the number of measure-

ments per DEM grid cell. The number of measurements per

DEM grid cell, in conjunction with the subcell terrain variance,

can estimate the DEM cell-level measurement uncertainty

(Gleason, 2012; Wechsler, 2007).

Wechsler (2007) indicates that LIDAR technology typically

provides multiple measurements per DEM grid cell, and that

information on subcell terrain variance provided by these

multiple measurements can be a useful component of DEM

uncertainty estimations. Current state-of-the-art linear-mode

LIDAR sensors have a data density of approximately 2–4

elevation returns/m2, and emerging single-photon LIDAR and

Geiger-mode LIDAR have a data density of approximately 23

and 25 elevation returns/m2 for open terrain, respectively

(Stoker et al., 2016). NOAA NCEI coastal DEMs have spatial

resolutions that usually range from approximately 3 to 10 m

(Amante and Eakins, 2016; Eakins and Grothe, 2014),

resulting in multiple measurements per DEM grid cell where

there is LIDAR coverage. DEM values typically represent a

distance-weighted mean of all measurements located within an

individual DEM grid cell when using an exact interpolation

technique (Amante and Eakins, 2016; Caress and Chayes,

1996). The cell-level measurement uncertainty can therefore be

expressed by the standard deviation of the mean, which is also

commonly known as the standard error of the mean, or simply

the standard error. The cell-level standard error depends on

the measurement uncertainty and any vertical datum trans-

formation uncertainty described in previous sections, the

subcell terrain variance, and the number of measurements in

a DEM grid cell at the defined spatial resolution.

Interpolation Uncertainty
A coastal DEM requires interpolation to estimate elevations

in DEM grid cells not constrained by measurements to create a

continuous surface and prevent instabilities while modeling

coastal processes (Amante and Eakins, 2016). Interpolation

techniques can be classified into general groups on the basis of

the mathematical assumptions and features that estimate

elevations for unmeasured locations using surrounding known

measurements (Amante and Eakins, 2016). An important

distinction between interpolation techniques in the context of

DEM uncertainty is geostatistical vs. deterministic interpola-

tion techniques.

Geostatistical Interpolation Techniques
Geostatistical techniques, such as kriging, are often utilized

to generate surfaces from discrete measurements as they

provide minimum-variance, linear unbiased estimations (Arm-

strong, 1998; Cressie, 1990; Matheron, 1963; Meyer, 2004).

Kriging utilizes the semivariogram to estimate unknown

elevations and to also predict their uncertainty (i.e. variance).

A semivariogram captures the spatial correlation of the terrain

by plotting the elevation variance of each pair of measurements

as a function of the distance between the measurements, and

then a mathematical model (e.g., linear, spherical, exponential)

is fit to the semivariogram. There are numerous types of

kriging, such as ordinary kriging, cokriging, and simple

kriging, and each type has different statistical assumptions

and constraints (Meul and Van Meirvenne, 2003). A main

limitation of implementing geostatistical methods such as

kriging is the large computational expense needed to create the

semivariogram, especially with voluminous elevation data sets

(Hell and Jakobsson, 2011). Geostatistical methods typically

have computational costs that scale with the cube of the

number of measurements (Cressie and Johannesson, 2008;

Kleiber and Nychka, 2015). Attempts to optimize kriging

methods, such as fixed-rank kriging (Cressie and Johannesson,

2008; Katzfuss and Cressie, 2011), may still not be feasible for

developing coastal DEMs with tens to hundreds of millions of
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elevation measurements, which is common with dense LIDAR

and multibeam sonar data sets (Katzfuss and Cressie, 2011).

Kriging is ideal when the terrain can be modelled as a

stationary process with a constant variance (Detweiler and

Ferris, 2010). Areas of coastal DEMs typically have different

terrain morphologies, from relatively flat coastal plains to

dynamic, coastal inlets with large terrain slope. Thus, the

terrain is not a stationary process, and one model will not

accurately capture the spatial structure of the entire DEM

(Maune et al., 2007). Computational limitations and varying

morphologies can necessitate dividing the region of interest

into smaller sections; however, this approach can cause abrupt

vertical offsets along the borders of the sections in the final,

composite DEM (Memarsadeghi and Mount, 2007; Meyer,

2004). Another limitation of using kriging to develop coastal

DEMs with accompanying uncertainty surfaces is the treat-

ment of measurement uncertainty when integrating multiple

data sets of disparate quality and age. The nugget of the

semivariogram used in kriging represents microscale elevation

variability and measurement uncertainty, and is calculated

from the variance between elevation measurements at infini-

tesimally small distances apart (Clark, 2010; Cressie, 1993;

Lythe and Vaughan, 2001). The measurement uncertainty

typically varies throughout a coastal DEM when integrating

multiple data sets of disparate quality and age. Thus, a global

indicator of the measurement uncertainty, as provided by the

semivariogram nugget, is of limited value for deriving coastal

DEM uncertainty surfaces.

Zhang et al. (2015) recognize the limitation of ordinary

kriging in that it does not consider measurement accuracy

differences in areas where multiple data sources overlap. It is

common practice to weight the contribution of data sets to the

DEM value differently depending on their quality and age,

with more recent, higher-quality data sets receiving a larger

weight (Amante et al., 2011). Such data set weighting schemes

are not easily implemented with geostatistical techniques.

Cokriging could incorporate multiple data sets of disparate

quality, and weight data sets on the basis of their semivario-

grams, but this version of kriging is even more computationally

intensive as a multiple semivariograms require derivation (one

for each data set). Furthermore, a weighting scheme based on

the respective semivariograms would not incorporate the age of

the data set. For example, a data set collected before a coastal

storm could be more accurate (i.e. have a smaller variance),

and, therefore, receive a larger weight than a hypothetically

less-accurate (i.e. larger variance) poststorm data set. A DEM

that aims to represent the present-day conditions should have

the poststorm data set receive a larger weight, but this is not

easily implemented with geostatistical techniques.

Deterministic Interpolation Techniques
Deterministic interpolation techniques, such as inverse

distance weighting (IDW), triangulation, and spline, predict

DEM values unconstrained by measurements, but notably,

provide no estimates of their vertical uncertainty. Amante and

Eakins (2016) and other previous research (e.g., Aguilar et al.,

2005; Carlisle, 2005; Erdogan, 2009, 2010; Guo et al., 2010)

indicate that terrain slope and curvature affect the accuracy of

interpolation techniques. In general, interpolation techniques

are less accurate in areas of large terrain slope and curvature.

Amante and Eakins (2016) use Spearman’s rank correlation to

determine that IDW and triangulation deviations from

measured depths are most positively correlated with terrain

slope, whereas spline deviations are most positively correlated

with terrain curvature. IDW and triangulation deviations are

most positively correlated with slope because they are linear-

weighted algorithms, and, therefore, local minima and maxima

are not represented unless they are directly sampled. Spline

deviations are most positively correlated with terrain curva-

ture because its minimum curvature algorithm produces

‘‘overshoots’’ near areas of large curvature (Amante and

Eakins, 2016).

Given the relationship between terrain slope and curvature

and interpolation accuracy, the terrain can hypothetically

predict interpolation uncertainty if there are dense data and

interpolation is at short distances from measurements (i.e. a

few DEM cells). Conversely, sparse depth measurements in

coastal waters require interpolation at large distances (i.e.

hundreds of cells) for the coastal DEM to retain the high spatial

resolution of the topographic elevation measurements. In areas

of large data gaps, the terrain is unknown and, therefore, it

cannot be used directly to predict interpolation uncertainty.

Instead of terrain, Amante and Eakins (2016) use the distance

to the nearest measurement to derive predictive bathymetric

interpolation uncertainty equations for Kachemak Bay, Alas-

ka. These equations are limited because they do not incorporate

measurement uncertainty from multiple, diverse bathymetric

and topographic data sets, and because they are derived

specifically for the terrain of Kachemak Bay (Amante and

Eakins, 2016).

The relative accuracy of various interpolation techniques

that generate DEMs, including deterministic techniques such

as spline and geostatistical techniques such as kriging, varies

depending on the terrain, data quality, and data density

(Chaplot et al., 2006). NOAA NCEI develops coastal DEMs

using spline interpolation for several reasons. Amante and

Eakins (2016) determined that the accuracy of three determin-

istic methods (spline, IDW, triangulation) are approximately

equivalent at short interpolation distances (one to two cells),

but that spline is more accurate at large distances, and,

therefore, is more appropriate for creating coastal DEMs with

sparse bathymetric measurements. Spline interpolation also

produces a smooth, gradually changing surface, which is

representative of many coastal areas in the United States with

gently varying terrain (Maune et al., 2007). LIDAR coverage in

portions of this manuscript’s study area in Florida (details

forthcoming) indicates gently varying terrain, and, therefore,

spline interpolation is an appropriate interpolation technique

for the study area. The gradually changing elevation surface

created by spline interpolation is also an important feature for

coastal inundation models, as abrupt discontinuities can cause

artificial barriers to water flow (Maune et al., 2007). The

limitations of implementing kriging with multiple, diverse data

sets previously described further justify utilizing spline

interpolation instead of kriging to develop NOAA NCEI DEMs.

A fundamental limitation with deterministic interpolation

techniques, such as spline, is the lack of accompanying

uncertainty estimates of the interpolated elevations. Methods
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to address this limitation of spline interpolation, in conjunction

with methods to estimate the other sources of DEM uncertainty

previously described, are the primary focus of this study.

Study Area and Coastal DEM Specifications
NOAA NCEI is developing coastal DEMs along the SW coast

of Florida in a suite of 0.25830.258 tiles. A DEM created for one

0.258 tile (bounding box: 26.75–27.00 N, 82.50–82.25 W) south

of Sarasota, Florida is the case study to highlight the methods

for deriving uncertainty surfaces (Figure 1). The DEM has a

spatial resolution of one-ninth arc-second (~3-m) and is

referenced horizontally to the World Geodetic System (WGS

84) and vertically to NAVD 88. The study area has lowland

elevations and shallow offshore depths that include the census-

designated places of Englewood and Rotonda West, and the

water bodies of the Gulf of Mexico, Lemon Bay, and the

northern portion of Gasparilla Sound. The study area consists

of mixed land use and land cover including residential

development, marine, transportation, freshwater forested

wetlands, mixed hardwood–coniferous, and improved pasture

(Florida Fish and Wildlife Conservation Commission and

Florida Natural Areas Inventory, 2016). The methods and

source code are developed to create accompanying uncertainty

surfaces for future NOAA NCEI DEMs in other locations in an

automated manner.

METHODS
Methods to estimate potential DEM vertical errors at the

individual cell-level that originate from the (1) elevation

measurements, (2) vertical datum transformation, (3) DEM

spatial resolution, and (4) interpolation technique are the

primary focus of this study. Figure 2 provides an overview of

the general methodology.

Software
MB-System (version 5.4.2220; Caress and Chayes, 1996) is

the main software that generates the one-ninth arc-second

coastal DEM. MB-System is a National Science Foundation-

funded open-source software application specifically designed

to manipulate multibeam sonar data, though it can utilize a

wide variety of data types, including generic xyz data. The MB-

System tool ‘‘mbgrid’’ applies spline interpolation to the xyz

data to generate the coastal DEM (Amante et al., 2011). Several

other open-source software programs including Generic Map-

ping Tools (GMT; version 4.5.13; Wessel et al., 2013), Geo-

spatial Data Abstraction Library (version 2.1.0), Python

computer language (version 2.7), as well as Unix utilities,

Figure 1. Hill shade of the coastal DEM developed by NOAA NCEI to

highlight methods for deriving uncertainty surfaces, and its location south of

Sarasota, Florida (see inset). (Color for this figure is available in the online

version of this paper.)

Figure 2. General overview of the methodology for estimating the total vertical uncertainty at the individual DEM cell-level.
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including Grep, Awk, and Sed, in a Bash environment, aid in

the derivation of the coastal DEM uncertainty surface.

Data Sources and Measurement Uncertainty
Several bathymetric and topographic point data sources

are integrated to generate the coastal DEM (Table 1, Figure

3). Quality assessment and quality control are performed on

each data set to identify and correct or remove obvious

anomalies. Furthermore, newer data sets supersede older

data sets where there is spatial overlap. Older data sets are

spatially ‘‘masked’’ to newer data sets so that the DEM

represents the most-recent elevations, and, therefore, the

best approximation of the present-day terrain. The topo-

graphic and bathymetric data sets are collected with a data

buffer 10% larger than the 0.258 3 0.258 extents to eliminate

any potential interpolation edge effects (Amante and Eakins,

2016). Table 1 indicates the year and the vertical uncertainty

of each data set at 1 standard deviation. The uncertainty is

obtained from the published metadata for modern topograph-

ic and bathymetric–topographic LIDAR data sets, which are

typically derived from ground control points or assumed

technology standards. The data hierarchy used in the mbgrid

gridding algorithm, as relative gridding weights, is also listed

in Table 1. The weights are assigned on the basis of the

overall quality assessment and the age of the data sets.

Higher-quality and more recent data sets receive larger

weights, and have greater influence on the predicted DEM

value (Schmidt, Chayes, and Caress, 2006).

Table 2 characterizes the uncertainty for bathymetric data

sets derived from the NOAA ZOCs. The NOAA ZOC classifi-

cation is generalized for this research solely on the basis of the

age of the survey, and consequently, the presumed technology

and quality standards, to estimate the uncertainty of bathy-

metric data sets. The National Oceanic Service (NOS)

Hydrographic Surveys, the National Geophysical Data Center

(NGDC) Multibeam, and U.S. Army Corps of Engineers

(USACE) Dredge Surveys are all assigned uncertainty values

according to the appropriate ZOC (Table 2). The NOS

Hydrographic Surveys are collected for NOAA charting

purposes, and, consequently, have rigorous quality standards.

The NOS Hydrographic Surveys in the study area utilized

single-beam sonar technology, and the vertical uncertainty is

assigned a ZOC of B. The NGDC Multibeam data set is a

collection of sonar-derived depths, typically from academic

fleets. These data are not held to the same accuracy standards

as NOS Hydrographic Surveys. Therefore, even though depths

were collected with multibeam sonar, which would typically be

assigned a ZOC of A for NOS Hydrographic Surveys, they are

assigned a larger uncertainty of ZOC of B. The USACE Dredge

Surveys utilized single-beam sonar, and are also assigned a

ZOC of B. The ZOCs indicate potential vertical errors at the

95% confidence level. The errors are assumed to be normally

distributed and divided by 1.96 to be consistent with the

topographic and bathymetric–topographic LIDAR data set

uncertainty provided in the data sets’ metadata at 1 standard

deviation.

Table 1. Data sets used to generate the DEM, their vertical uncertainty at 1

standard deviation, and their relative gridding weight in MB-System’s

mbgrid tool; larger weights have more influence on the predicted DEM

value. The vertical uncertainty of the data sets vary, particularly between

modern, LIDAR-derived data sets and legacy bathymetric data sets that

date back to 1951.

Data Set Year

Vertical

Uncertainty

(1 St. Dev.)

Relative

Gridding

Weight

USACE topobathy LIDAR:

Florida Gulf Coast 2015 –0.06 m 100

USACE Gulf Coast (Florida)

topobathy LIDAR 2010 –0.20 m 25

Florida Division of

Emergency Management

topo LIDAR 2007 –0.09 m 10

USACE post-Wilma (Florida)

topobathy LIDAR 2006 –0.15 m 5

U.S. Geological Survey post-

Charley topobathy LIDAR 2004 –0.15 m 5

USACE post-Ivan topobathy

LIDAR 2004 –0.15 m 5

USACE pre-Ivan topobathy

LIDAR 2004 –0.15 m 5

USACE Dredge Surveys 1998–2017 ZOC B; See Table 2 10

NGDC Multibeam 1999–2003 ZOC B; See Table 2 10

NOS Hydrographic Surveys 1951–59 ZOC B; See Table 2 1

Figure 3. Spatial extent of the DEM source data. The data density varies

throughout the study area, particularly with dense FDEM 2007 topographic

LIDAR and sparse NOS Hydrographic Surveys. Note: The spatial footprints

of the sparse bathymetry point data are enlarged by a factor of ~93 to be

visible at the scale of the map. (Color for this figure is available in the online

version of this paper.)
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Vertical Datum Transformation Uncertainty
Two bathymetric data sets, the NOS Hydrographic Surveys

and the USACE Dredge Surveys, are originally referenced

vertically to the tidal datum of MLLW. The NOAA vertical

datum transformation tool (VDatum) converts elevation data

sets to common datums by considering the spatial variability of

the relationship between the datums (Parker et al. 2003).

VDatum transforms the NOS Hydrographic Surveys and the

USACE Dredge Surveys from the tidal datum of MLLW to the

orthometric datum of NAVD 88 (Geoid 12b) to be consistent with

the topographic and bathymetric–topographic LIDAR data sets.

VDatum provides a single, global estimate of vertical datum

transformation uncertainty of 0.12 m at 1 standard deviation in

this area of SW Florida (NOAA, 2016). The other bathymetric

data set, the NGDC Multibeam, was not referenced to a specific

tidal datum during collection. The depths are assumed to be

referenced to the instantaneous water level, and no datum

transformation is performed. The lack of specific tidal datum for

the NGDC Multibeam also provides justification for the larger

uncertainty designation (i.e. ZOC of B instead of ZOC of A). The

measurement uncertainty listed in Tables 1 and 2 (rm) and any

vertical datum transformation uncertainty (i.e. 0.12 m) provided

by VDatum (rd) are considered independent, and are combined

using the root sum of squares (Schmid, Hadley, and Waters,

2013) to calculate the data set source vertical uncertainty (SVU)

at 1 standard deviation (Equation 1):

SVU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

m þ r2
d

q
ð1Þ

where, SVU ¼ the source vertical uncertainty, rm ¼ the

measurement uncertainty, and rd ¼ vertical datum transfor-

mation uncertainty.

DEM Cell-Level Source Uncertainty
The DEM cell-level source uncertainty is equivalent to

Equation (1) where there is only one measurement in a DEM

grid cell. Where there are multiple measurements in a DEM

grid cell, the DEM cell-level uncertainty is calculated from the

SVU from Equation (1), the subcell terrain variance, and the

number of measurements. First, the exact pooled variance is

calculated (Rudmin, 2010). ‘‘The exact pooled variance is the

mean of the variances plus the variance of the means of the

component data sets’’ (Rudmin, 2010, p. 1). The cell-level exact

pooled variance (S2; Equation [2]) is equal to the square of the

weighted mean of the SVU from Equation (1) for all

measurements plus the weighted variance of all measurements

around the weighted mean elevation, multiplied by the Bessel

small-sample correction factor (Upton and Cook, 2014). The

Bessel small-sample correction factor corrects the bias in the

estimation of the cell-level variance, especially when the

number of measurements in a DEM grid cell is less than 30.

The relative data set weighting hierarchy provided in Table 1 is

incorporated if there are elevation measurements in a DEM

grid cell from more than one data set. Note that Equation (2)

also calculates the exact pooled variance where there are

multiple measurements in a DEM grid cell from the same data

set, as the data set weight is equivalent for all measurements

and therefore does not affect the calculation. The cell-level

standard error is then calculated from the exact pooled

variance in Equation (2), and the number of measurements

per grid cell as determined by the spatial resolution of the

DEM, to represent the DEM cell-level source uncertainty (Sz̄ ;

Equation [3]):

S2 ¼

Xn

i
SVU2

i wiXn

i
wi

þ

Xn

i
ðzi � z̄Þ2wiXn

i
wi

 !
n

n� 1

� �
ð2Þ

where, S2¼ the cell-level exact pooled variance, n¼the number

of elevation measurements in a given DEM grid cell, SVUi¼the

measurement and any vertical datum transformation uncer-

tainty calculated from Equation (1) for the ith measurement, wi

¼ the ith measurement data set weight provided in Table 1, zi¼
the ith measurement elevation value, and z̄ ¼ the weighted

mean elevation of all measurements in a given DEM grid cell.

Sz̄ ¼
ffiffiffiffiffiffi
S2

n

r
ð3Þ

where, Sz̄¼ the cell-level standard error, S2¼ the exact pooled

variance calculated from Equation (2), and n¼ the number of

elevation measurements in a given DEM grid cell.

A source uncertainty surface at 1 standard deviation is then

derived from the DEM cell-level standard error to reflect that

the source uncertainty also propagates into interpolation

uncertainty in cells unconstrained by measurements. The

interpolation uncertainty (details forthcoming) is calculated by

assuming the measured values are the ‘‘true’’ values; however,

nearby source uncertainty contributes additional uncertainty

in interpolated regions of the DEM. The DEM cell-level

standard error calculations are associated with the latitude

and longitude of the center of each cell constrained by at least

one measurement. The GMT software ‘‘surface’’ tool creates

the source uncertainty surface at a spatial resolution of one-

ninth arc-second with the cell-level standard error point data

using spline interpolation with an adjustable tension value. A

tension value of 0.35 is utilized to suppress undesired

oscillations and false local maxima or minima (Smith and

Wessel, 1990). Furthermore, a lower-limit value of zero is

imposed on the output source uncertainty surface to prevent

negative uncertainty values in any areas of false local minima

created by the spline interpolation.

Interpolation Uncertainty
A split-sample method quantifies interpolation deviations

from measured values to derive an interpolation uncertainty

Table 2. Adapted zones of confidence (ZOC) to estimate the vertical

uncertainty of bathymetric data sets. The vertical uncertainty is

estimated on the basis of the age (and presumed technology and quality

standards) of the data set. The variable d in the vertical uncertainty

equation represents the water depth. Potential vertical errors are assumed

to be normally distributed and are converted to 1 standard deviation by

dividing by 1.96. The bathymetric data sets (USACE Dredge Surveys,

NGDC Multibeam, and NOS Hydrographic Surveys) in this study area are

all assigned a ZOC of B.

ZOC Years

Presumed

Technology

Vertical

Uncertainty

(1 SD)

A 1990–present Multibeam sonar –0:5mþ1%d
1:96

B 1940–90 Single-beam sonar –1mþ2%d
1:96

C Pre-1940 Lead line survey –2mþ2%d
1:96
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equation (Amante and Eakins, 2016). The split-sample method

is applied to smaller subgrids within the study area to quantify

interpolation deviations for terrains with different slopes and

curvatures. The interpolation deviations from the smaller

subgrids are associated with the distance to the nearest

measurement, and then aggregated to derive a single interpo-

lation uncertainty equation to apply to the entire study area.

Split-Sample Method
A split-sample method consists of randomly omitting a

percentage of measurements, applying an interpolation tech-

nique, and calculating the differences between the interpolated

values and the omitted measurements (Amante and Eakins,

2016). During each split-sample routine, the retained mea-

surements are gridded using spline interpolation with the MB-

System tool mbgrid, and the resulting interpolated raster is

compared, on a cell-by-cell basis, with the omitted measure-

ment raster to quantify the interpolation deviations. For each

cell, the Euclidean distance to the nearest measurement is

calculated, measured in raster cell units. Each interpolation

deviation is then associated with the distance to the nearest

measurement. See Amante and Eakins (2016) for more details

on the split-sample method.

DEM Subgrids
The terrain slope and curvature affect the magnitude of

spline interpolation deviations from measured values (Amante

and Eakins, 2016). Therefore, the DEM is divided into smaller

subgrids at the same spatial resolution (i.e. one-ninth arc-

second) to perform the split-sample method on different

terrains throughout the study area. The number of rows and

columns of the subgrids is determined by calculating the

distance to the nearest measurement for every cell in the study

area. The maximum value of the distance to the nearest

measurement, i.e. the maximum interpolation distance, is

~136 cells and the 95th percentile is ~59 cells. Subgrid

dimensions are automatically generated as four times the 95th

percentile of the distance to the nearest measurement for the

entire study area, which equates to 236 rows by 236 columns

(~0.5 km2). These dimensions ensure that a statistically

significant number of interpolation deviations are quantified

using the split-sample procedure for almost all interpolation

distances in the DEM.

Split-Sample Subgrids: Criteria and Selection
A stratified, semirandom sampling approach selects the

subgrids for split-sample routines, ensuring that the split-

sample subgrids are located in areas of relatively dense data

and are geographically located throughout the DEM (Figure 4).

The cell-sampling density is defined as the proportion of DEM

grid cells constrained by measurements, and determines the

eligibility of subgrids for split-sample routines. Areas of large

cell-sampling densities are preferred as they produce more

interpolation deviations, i.e. more samples, to derive the

relationship between interpolation deviations from measured

values and the distance to the nearest measurement. Further-

more, areas of large cell-sampling densities are typically

constrained by higher-accuracy measurement technologies,

such as LIDAR. Thus, the measured elevations in these areas

depict realistic terrain, which is ideal for quantifying interpo-

lation deviations to subsequently derive the interpolation

uncertainty equation.

The subgrids are initially assigned to three strata on the

basis of their elevation values: bathymetry (bathy), bathym-

etry–topography (bathytopo), and topography (topo). Sub-

grids with all DEM values below the NAVD 88 zero elevation

are bathy, subgrids with all DEM values above zero are topo,

and subgrids with DEM values below and above zero are

bathytopo. A cell-sampling density percentile threshold is

specified for each stratum to ensure that areas of dense data

are selected. In this study, all subgrids equal to or greater

than the 50th percentile of the cell-sampling density for their

respective stratum are eligible for split-sample selection.

Twenty-five subgrids for each stratum are then selected for

split-sample routines by maximizing the cumulative distance

between all subgrids in that stratum, for a total of 75 subgrids

(Figure 4).

Derived Interpolation Uncertainty Equation
The split-sample method is implemented on all 75 selected

subgrids shown in Figure 4. The split-sample percentage

Figure 4. Location of the split-sample subgrids for the bathymetry (Bathy),

bathymetry–topography (Bathytopo), and topography (Topo) strata to

quantify interpolation deviations and derive the interpolation uncertainty

equation. The subgrids are in areas of relatively dense data (areas of black),

especially for the BathyTopo and Topo strata, and are also geographically

located throughout the DEM area to incorporate the effect of terrain slope

and curvature on the magnitude of interpolation deviations. Note: The

spatial footprints of the sparse bathymetry point data are enlarged by a

factor of ~93 to be visible at the scale of the map. (Color for this figure is

available in the online version of this paper.)
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determines the number of measurements retained for interpo-

lation (i.e. training data). The split-sample percentage is

automatically determined as the 5th percentile of the cell-

sampling density from all DEM subgrids in the study area. The

5th percentile of the cell-sampling density is 0.007%, equating

to retaining elevation values for four of the 55,696 raster cells

in a subgrid for training in each split-sample routine.

Elevations along the outermost edge of the subgrids are also

retained to guide interpolation to avoid interpolation edge

effects (Amante and Eakins, 2016). Amante and Eakins (2016)

indicate that the magnitude of the interpolation deviations

decrease at the same distance to the nearest measurement

when increasing the cell-sampling density. Thus, deriving an

interpolation uncertainty equation using the lower limit of the

cell-sampling density (the 5th percentile) ensures a liberal

uncertainty estimate, as the cell-sampling density will be

larger for most areas of the DEM.

The split-sample method is performed 50 times for each of the

75 subgrids for an aggregated total of 3750 split-sample

routines. Fifty million interpolation deviations from the

original measurements and their associated distance to the

nearest measurement are randomly selected from the aggre-

gated split-sample routines. The interpolation deviations with

distances up to the 95th percentile of the distance to the nearest

measurement for the entire DEM (i.e. ~59 cells) are separated

into 10 equal-width bins of 5.9 cells. The standard deviation is

calculated for each bin to derive an equation representing the

interpolation uncertainty as a function of distance to the

nearest measurement with a best-fit power law equation

(Equation [4]). The interpolation uncertainty equation is then

applied to a one-ninth arc-second raster representing the

distance to the nearest measurement to derive the interpola-

tion uncertainty surface at 1 standard deviation:

IðdÞ ¼ AdB ð4Þ

where, I(d) ¼ the interpolation uncertainty at 1 standard

deviation, d ¼ the distance to the nearest measurement in

raster cells, and A and B are derived coefficients.

Total Vertical Uncertainty
The DEM source uncertainty surface and interpolation

uncertainty surface are assumed to be independent, and the

total vertical uncertainty (TVU) surface at 1 standard

deviation is calculated as the root sum of squares (Equation

[5]):

TVUsurface ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

s surface þ r2
i surface

q
ð5Þ

where, TVUsurface ¼ the total vertical uncertainty surface,

rs_surface ¼ the source uncertainty surface, and ri_surface ¼
interpolation uncertainty surface.

RESULTS
The primary result of this study is an uncertainty surface

that estimates potential DEM vertical errors at the individual

cell-level that originate from the (1) elevation measurements,

(2) vertical datum transformation, (3) DEM spatial resolution,

and (4) interpolation technique.

Source Uncertainty
The DEM cell-level source uncertainty is calculated for every

cell constrained by at least one measurement, and is used to

derive the source uncertainty surface. The measurement

uncertainty, any vertical datum transformation uncertainty,

subcell terrain variance, and the number of measurements per

grid cell determine the DEM cell-level source uncertainty using

Equations (1), (2), and (3). The number of measurements per

DEM grid cell is determined by the spatial resolution of the

DEM (i.e. one-ninth arc-seconds), and is shown in Figure 5. The

number of measurements per grid cell indicates areas of

relatively dense and sparse data. In general, areas with LIDAR

and multibeam sonar data coverage have many measurements

per DEM grid cell, and consequently, small vertical uncertain-

ty. Areas of sparse data include deeper waters that are

constrained by a single bathymetric measurement per DEM

grid cell, and have large vertical uncertainty. An example of the

cell-level source uncertainty for an individual DEM grid cell

and its location within the DEM source uncertainty surface is

shown in Figure 6. There is small uncertainty (–0.015 m at 1

Figure 5. Number of measurements per grid cell affects the magnitude of

the cell-level source uncertainty; many measurements per grid cell result in

small uncertainty of the DEM value. Areas of dense data are typically found

on land where there is topographic LIDAR and offshore within a single swath

of multibeam sonar. Areas of dark vertical stripes on land indicate where

LIDAR flight paths overlap and effectively double the number of measure-

ments per grid cell, resulting in smaller uncertainty. Areas of sparse data,

such as deeper waters, are constrained by a single bathymetric measure-

ment per DEM grid cell and have large uncertainty. Note: The spatial

footprints of the sparse bathymetry point data are enlarged by a factor of

~93 to be visible at the scale of the map.
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standard deviation) in the individual DEM grid cell highlighted

in Figure 6 due to small source data set uncertainty from

topographic LIDAR (Florida Division of Emergency Manage-

ment [FDEM] 2007 LIDAR), small subcell terrain variance in

flat terrain, and 40 measurements in the DEM grid cell due to

effective laser pulse penetration in nonvegetated land cover.

The effect of land cover and terrain slope on the magnitude of

the cell-level source uncertainty is further illustrated in Figure

7, and statistically quantified in Table 3. Areas of denser

vegetation and larger slopes have larger cell-level source

uncertainty. Four land cover classes in the study area are

identified from the Florida Cooperative Land Cover Map

(Florida Fish and Wildlife Conservation Commission and

Florida Natural Areas Inventory, 2016) to highlight the effect

of land cover on the number of measurements per DEM cell,

and consequently, the magnitude of the cell-level source

Figure 6. An example of the cell-level source uncertainty (standard error) for an individual DEM grid cell (left diagram) and its location within the DEM source

uncertainty surface (right diagram). The cell-level source uncertainty for an individual DEM grid cell (left diagram) is calculated from the measurement

uncertainty (error bars), the number of measurements (circles), and subcell terrain variance (vertical position of measurements around the dashed line

representing the mean elevation). Plus/minus the pooled standard deviation from the mean elevation is shown in light gray, and plus/minus the standard error at

1 standard deviation from the mean elevation is shown in dark gray. The source uncertainty surface (right diagram) is derived from the cell-level source

uncertainty (left diagram) and varies spatially, depending on the measurement uncertainty, any vertical datum transformation uncertainty, the number of

measurements per DEM grid cell, and subcell terrain variance around the mean elevation of the DEM grid cell. The location of the individual DEM grid cell in the

left diagram is indicated by the star in the right diagram, and its relationship to land cover and terrain slope is indicated by the star in Figure 7.

Figure 7. Effect of land cover and terrain slope on the cell-level source uncertainty (i.e. standard error). Areas of dense vegetation (veg.) have large uncertainty

due to few LIDAR ground returns per DEM grid cell due to poor laser pulse penetration. Areas of large terrain slope have large uncertainty due to large subcell

terrain variance around the mean elevation. Conversely, flat terrains with sparse vegetation have small uncertainty due to small subcell terrain variance and

many LIDAR ground returns per DEM grid cell due to effective laser pulse penetration. The area of low uncertainty indicated by the star is the location of the

individual DEM grid cell shown in Figure 6.
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uncertainty (i.e. standard error). Land cover classes represent-

ing dense vegetation, ‘‘Freshwater Forested Wetlands’’ and

‘‘Mixed Hardwood–Coniferous,’’ have a relatively small aver-

age number of measurements per DEM cell, ~9 and ~10

measurements, due to poor laser pulse penetration, and

relatively large average standard error, 0.063 m and 0.061 m,

respectively (Table 3). Classes representing sparse vegetation,

‘‘Improved Pasture’’ and ‘‘Transportation,’’ have a relatively

large average number of measurements per DEM cell,~22 and

~33 measurements, due to effective laser pulse penetration,

and relatively small average standard error, 0.030, and 0.028

m, respectively (Table 3). The Spearman’s rank correlation

coefficient (Spearman, 1904; Table 3) indicates a negative

correlation between the standard error and the number of

measurements for all four land cover classes, i.e. more

measurements per DEM cell results in smaller cell-level

standard error, as expected per Equation (3). Furthermore,

terrain slope is positively correlated with standard error for all

classes, as larger terrain slope results in larger subcell terrain

variance, and, consequently, larger standard error, as expected

per Equations (2) and (3). The average terrain slope for each of

the four classes is less than 28 and the relatively flat terrain

results in a smaller-magnitude Spearman’s rank correlation

coefficient between terrain slope and standard error than the

correlation coefficient between the number of measurements

and standard error for each land cover class (Table 3). The

number of DEM cells, i.e. sample size, for each of the four land

cover classes is greater than 250,000, and all Spearman’s rank

correlation coefficients have p-values , 0.001.

Interpolation Uncertainty
The interpolation deviations from measured values are

plotted as a function of distance to the nearest measurement

in panel A of Figure 8. The deviations are not biased, with a

mean of approximately 0 m for all distances to the nearest

measurement. The interpolation deviations are separated into

10 equal-width bins of 5.9 cells, up to the 95th percentile of the

distance to the nearest measurement for the entire DEM (~59

Table 3. Effect of land cover and terrain slope on the magnitude of the cell-level source uncertainty (standard error). Land cover classes representing dense

vegetation, ‘‘Freshwater Forested Wetlands’’ and ‘‘Mixed Hardwood–Coniferous,’’ have a relatively small average number of measurements per DEM cell due

to poor laser pulse penetration, and consequently, have relatively large average standard error. Classes representing sparse vegetation, ‘‘Improved Pasture’’

and ‘‘Transportation,’’ have a relatively large average number of measurements per DEM cell due to effective laser pulse penetration, and consequently, have

small average standard error. Spearman’s rank correlation coefficient indicates a negative correlation between the standard error and the number of

measurements for all four land cover classes, i.e. more measurements per DEM cell result in smaller cell-level standard error, as expected. Terrain slope is

positively correlated with standard error for all classes, as larger terrain slope results in larger subcell terrain variance, and, consequently, larger standard

error, as expected. The number of DEM cells, i.e. sample size, for each of the four land cover classes is greater than 250,000, and all Spearman’s rank

correlation coefficients have p-values , 0.001.

Land Cover

Avg. St.

Error (m)

Avg. No. of

Measurements

per DEM Cell

Avg.

Slope (8)

Spearman’s Coefficient:

St. Error and No.

of Measurements

Spearman’s Coefficient:

St. Error and Slope

Freshwater Forested

Wetlands

0.063 ~9 1.532 �0.904 0.341

p , 0.001 p , 0.001

Mixed Hardwood–

Coniferous

0.061 ~10 1.771 �0.906 0.321

p , 0.001 p , 0.001

Improved Pasture 0.030 ~22 0.716 �0.947 0.401

p , 0.001 p , 0.001

Transportation 0.028 ~33 1.845 �0.896 0.356

p , 0.001 p , 0.001

Figure 8. Fifty million interpolation deviations from measured values from the split-sample routines (panel A) and the derived interpolation uncertainty

equation (panel B). The deviations in panel A are unbiased, with a mean of approximately 0 m. Also, note that the magnitude of the interpolation uncertainty in

panel B increases with distance to the nearest measurement, and then levels off as the spatial autocorrelation of the terrain decreases.
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cells). The interpolation uncertainty equation is derived from

the standard deviation of the binned interpolation deviations

as a function of distance to the nearest measurement (panel B

of Figure 8). The magnitude of the interpolation uncertainty in

panel B increases with larger distances to the nearest

measurement, and then levels off as the spatial autocorrelation

of the terrain decreases. The interpolation uncertainty surface

and its relationship to the distance to the nearest measurement

is shown in Figure 9. There is large interpolation uncertainty in

areas of sparse, bathymetric measurements offshore due to

large distances to the nearest measurement. There is small

interpolation uncertainty on land and along the coastline in

areas of dense LIDAR measurements due to small distances to

the nearest measurement.

Total Vertical Uncertainty
The total uncertainty surface estimates potential DEM

vertical errors at the individual DEM cell-level at 1 standard

deviation (Figure 10, panel C). The total uncertainty surface is

calculated from the root sum of squares of the source

uncertainty surface (panel A) and the interpolation uncertainty

surface (panel B) in Figure 10. The largest estimations of

potential vertical errors are due to a combination of large

measurement uncertainty and additional vertical datum

transformation uncertainty, few measurements per grid cell

due to sparse data and the high spatial resolution of the DEM,

and large interpolation uncertainty. Areas of large vertical

uncertainty are in deeper waters where there are sparse, less-

accurate NOS Hydrographic Survey measurements with

transformed vertical datums, and large interpolation distanc-

es. Areas of small vertical uncertainty are located on land

surfaces with small terrain slopes constrained by dense,

relatively accurate FDEM 2007 topographic LIDAR measure-

ments with no vertical datum transformation, and small

interpolation distances.

DISCUSSION
The methods and results of this study advance previous

research by Jakobsson, Calder, and Mayer (2002), Calder

(2006), and Hell and Jakobsson (2011) by integrating bathy-

metric and topographic data sets of disparate age, quality, data

density, and vertical datums to create a seamless coastal DEM,

and most notably, provide an estimate of the cell-level

uncertainty that also incorporates the spatial resolution of

the DEM. Uncertainty estimations using the number of

measurements per DEM grid cell, as determined by the spatial

resolution of the DEM, are remarkably absent from literature

on estimating DEM uncertainty, despite being acknowledged

by Wechsler (2007) a decade ago.

The TVU surface (Figure 10, panel C) is the uncertainty

product that should be incorporated in coastal process

modeling. DEM realizations can be created by adding or

subtracting the TVU surface at a desired confidence level from

the DEM. For example, the TVU surface multiplied by –1.96

for the 95% confidence level, and then added to the DEM

separately, would result in maximum and minimum DEM

realizations, respectively. Furthermore, intermediate realiza-

Figure 9. Distance to the nearest measurement (panel A) and the

interpolation uncertainty surface (panel B). Note that the interpolation

uncertainty in panel B varies with the distance to the nearest measurement

and is largest in areas of sparse, bathymetric measurements offshore.

Figure 10. Source uncertainty surface (panel A), interpolation uncertainty surface (panel B), and the total uncertainty surface (panel C) at 1 standard deviation.

The total uncertainty surface represents potential DEM deviations from the actual seabed or land surface. Note that the total uncertainty varies spatially, and

reflects the spatial variability of both the source and interpolation uncertainty surfaces. Large vertical uncertainty exists in deeper waters offshore with sparse,

echo-sounder measurements. Conversely, small vertical uncertainty exists on flat terrains with dense LIDAR measurements. The total uncertainty surface is the

uncertainty product that should be incorporated in coastal process modeling.
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tions can be created between the maximum and minimum

DEM realizations by multiplying the TVU surface by factors

between �1.96 and 1.96, and then adding the resulting

uncertainty surfaces to the DEM separately.

Total Vertical Uncertainty
The relative contribution of the measurement, vertical

datum transformation, and interpolation uncertainty to the

TVU varies throughout the study area and depends on the data

set constraining the DEM. The measurement uncertainty is

the largest contributor to the TVU for older bathymetric

measurements in deeper waters, in accordance with the

equation for ZOC B in Table 2. For example, at depths of 18

m, the measurement uncertainty at 1 standard deviation for

the NOS Hydrographic Surveys data set is approximately 0.7

m. This measurement uncertainty dominates until distances of

approximately 40 cells from the nearest measurement, where

the interpolation uncertainty becomes a larger contributor.

Conversely, with relatively accurate LIDAR technology, the

interpolation uncertainty contribution is larger than the

measurement uncertainty when the distance to the nearest

measurement is larger than a few cells. The measurement

uncertainty is generally much larger than the vertical datum

transformation uncertainty (0.12 m), especially in deeper

waters, for data sets that use VDatum to transform the data

from the tidal datum of MLLW to the orthometric datum of

NAVD 88. The vertical datum transformation is also smaller

than the interpolation uncertainty for essentially all interpo-

lation distances. Therefore, the vertical datum transformation

uncertainty is not a primary contributor to DEM uncertainty in

areas of sparse, old, relatively inaccurate bathymetric mea-

surements.

Source Uncertainty
A limitation of the research in this manuscript is that the

measurement uncertainty is represented by the global statistic

provided in the data sets’ metadata. Previous research

indicates that the uncertainty of elevation measurements,

particularly with LIDAR, is correlated with terrain and land

cover, with larger uncertainty in areas of larger terrain slope

and dense vegetation (Bater and Coops, 2009; Goulden et al.,

2016; Leon, Heuvelink, and Phinn, 2014; Spaete et al., 2011; Su

and Bork, 2006). Likewise, horizontal errors can produce large

vertical errors in areas of large terrain slope with hydrographic

data (Calder, 2006; Marks and Smith, 2008). Future research

could improve the estimation of topographic measurement

uncertainty by collecting accurate ground control points,

correlating measurement error with terrain and land cover,

and deriving spatially varying measurement uncertainty

estimations (Leon, Heuvelink, and Phinn, 2014). The method-

ology presented in this manuscript is designed specifically for

the development of NOAA NCEI DEMs, and the collection of

ground control points for the numerous DEMs developed

annually for coastal locations around the United States is not

feasible because of limited resources. The current methodology

does, however, partially incorporate terrain and land cover

effects on the magnitude of the cell-level source uncertainty.

The exact pooled variance in Equation (2) is larger in areas of

steep slopes because of larger subcell terrain variance around

the mean elevation. Furthermore, there are fewer LIDAR

ground returns in densely vegetated areas, and thus the

standard error calculation using Equation (3) will also be larger

when dividing by a smaller number of measurements, n. This

partial incorporation of terrain and land cover effects on the

magnitude of the cell-level source uncertainty is illustrated in

Figure 7 and statistically quantified in Table 3.

Another limitation related to the measurement uncertainty

is the assumption of a normal error distribution. Previous

research indicates that DEM errors can have a nonnormal

error distribution (e.g., Marks and Smith, 2008; Schmid,

Hadley, and Waters, 2013). Likewise, limited resources

prevent the collection of additional data to determine the

specific error distribution and necessitate the normality

assumption. The normality assumption may result in an

overestimation of the vertical uncertainty in DEMs (Schmid,

Hadley, and Waters, 2013).

A final limitation of the source uncertainty estimation is the

assumption that the datum transformation uncertainty is

uniform across the study area. In areas of complex bathymetry,

the relationship between orthometric and tidal datums can

vary substantially, and, therefore, have spatially varying

uncertainty (NOAA, 2016). The global metric of VDatum

uncertainty in this research is, thus, another limitation. There

is ongoing research at NOAA to create VDatum uncertainty

surfaces, and when completed, this spatially varying vertical

datum transformation uncertainty surface will easily be able to

be incorporated into the methods described in this manuscript.

Spatial Resolution, Cell-Level Source Uncertainty, and
Sample Size

For DEM grid cells constrained by measurements, the cell-

level source uncertainty is represented by the standard error.

In cells constrained by one measurement, the standard error is

simply the data set SVU calculated from Equation (1) because

the denominator, the number of measurements, n, in Equation

(3) is equal to 1. This is the best approximation of the cell-level

source uncertainty, but it is of extremely limited statistical

value as there needs to be at least two measurements in a DEM

grid cell for any useful metric regarding the uncertainty of an

average value. Furthermore, even with a few measurements in

a DEM grid cell, the small sample size requires a correction

factor from the Student t distribution to convert the standard

error, with an assumed normal distribution, to a desired

population confidence level (e.g., 95% confidence; Student,

1908). Accordingly, another useful product to be disseminated

with NOAA NCEI DEMs is an accompanying grid representing

the number of measurements per DEM grid cell, similar to

Figure 5. This grid can inform the appropriate Student t

correction factor to express the uncertainty at a desired

population confidence level. Future research will investigate

additional techniques to estimate the uncertainty with small

sample sizes, and to properly propagate the DEM uncertainty

into the modeling of coastal processes.

One avenue of future research is to develop multiresolution,

raster-based DEMs (Hell and Jakobsson, 2011; Wechsler,

2007). Vector-based DEMs, such as triangular irregular

networks, allow for spatially varying resolutions on the basis

of data density and terrain variance, but the unstructured

nature is often not supported or computationally efficient in
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many modeling algorithms because of the complexity of

computational geometry (de Azeredo Freitas et al., 2016;

Shingare and Kale, 2013). Future research will investigate

developing multiresolution raster grids that allow for different

resolutions on the basis of data density, terrain variance, and

vertical uncertainty. Hell and Jakobsson (2011) reduce DEM

artifacts from spline interpolation introduced by large inter-

polation distances in areas of sparse measurements, while

maintaining terrain details in areas of dense data, by

generating a stack of multiple-resolution raster DEMs.

Essentially, the higher-resolution grid cells overrule lower-

resolution grid cells in the stack where there are sufficient

data, and a composite, multiresolution DEM is generated (Hell

and Jakobsson, 2011). However, Hell and Jakobsson (2011) do

not provide estimates of the vertical uncertainty in the

intermediate DEMs or in the final, composite multiresolution

DEM.

Hell and Jakobsson (2011) use only the data density to locally

adjust the DEM resolution. Future research will utilize the cell-

level uncertainty estimates generated with the methods

described in this manuscript, which incorporate the data

density (i.e. number of measurements per DEM grid cell), in

addition to the subcell terrain variance, and source measure-

ment uncertainty, to iteratively adjust the local DEM resolu-

tion on the basis of a user-defined uncertainty limit. For

example, a limit of 1-m TVU at 1 standard deviation can be

established, and several DEMs are generated at progressively

coarser resolutions until all DEM grid cells are below the 1-m

uncertainty limit. Coarsening the resolution will result in less

uncertainty in the average elevation within the footprint of a

DEM grid cell for many coastal areas because of more

measurements, especially in flat terrains where there is small

subcell terrain variance. The resulting stack of DEMs with

different spatial resolutions will be compared on a cell-by-cell

basis depth-wise, with the highest resolution under the

uncertainty limit being represented in the final, composite

DEM, using similar methods as Hell and Jakobsson (2011).

This future research will also result in a more statistically

robust standard error calculation in areas of sparse measure-

ments, as there will be more measurements in DEM grid cells

at coarser spatial resolutions. The specified uncertainty limit

and resulting spatial resolution, however, will need to be

balanced with the relevant scale of analysis of the DEM

application (e.g., coastal inundation modeling, habitat model-

ing, visualization). For example, a 30-m2 DEM grid cell that

contains hundreds of measurements may have a desired low

vertical uncertainty of the average elevation within the cell

footprint, but this coarse cell size would not be useful for

detailed coastal inundation modeling, as significant volumes of

water flow within conduits of smaller spatial dimensions.

Interpolation Uncertainty
The interpolation uncertainty equation in panel B of Figure

8, and the resulting interpolation uncertainty surface illus-

trated in panel B of Figure 9, are global estimates that are

derived from numerous terrains throughout the study area to

provide an intermediate approximation of interpolation uncer-

tainty. Future research could derive equations to better

incorporate the effect of local terrain slope and curvature on

the magnitude of interpolation deviations. Interpolation

uncertainty equations could be derived for each split-sample

subgrid. These separate equations would then be applied to

nearby subgrids using a distance-weighted algorithm to

produce a continuous, but varying, estimate of interpolation

uncertainty across the entire DEM to incorporate the effect of

local terrain slope and curvature on the magnitude of

interpolation uncertainty.

Morphologic Change
NOAA NCEI DEMs are developed to represent the most-

recent data sets, and, therefore, the best approximation of the

present-day terrain. Consequently, newer data sets supersede

older data sets, and older data sets are removed before DEM

generation. Future research will estimate additional vertical

uncertainty due to potential morphologic change from the data

collection date. For instance, dynamic areas, such as coastal

inlets, have additional uncertainty due to morphologic change

since the data collection date. An additional uncertainty

contribution can be calculated from the cell-level measurement

variance among data sets from multiple time periods. The cell-

level measurement variance from multiple time periods can

identify areas prone to morphologic change from natural

sediment transport or storm events. The propensity for

morphologic change can be another uncertainty component,

especially in between data collections, or when using the DEM

to model future coastal processes, such as sea-level rise

inundation. For example, researchers modeling future coastal

inundation from sea-level rise should incorporate uncertainty

in the DEM due to potential, future morphologic change.

Morphologic change analysis in dynamic coastal areas is now

possible where there are multiple, accurate coastal LIDAR

surveys spanning close to a decade, including this study area in

Florida. Morphologic change analysis can also indicate areas

that are relatively stable vs. dynamic, which aids in prioritizing

future data collection areas.

CONCLUSIONS
Integrating several bathymetric and topographic data sets to

create a coastal DEM and estimating its vertical uncertainty at

the individual cell-level provide numerous challenges (Eakins

and Grothe, 2014). The diverse data sets are typically collected

with a wide range of technology, at different time periods, and

referenced to different vertical datums. Consequently, the data

sets have disparate measurement uncertainty, with additional

uncertainty introduced by any vertical datum transformation.

Furthermore, the incongruent data densities of bathymetric

and topographic data sets often necessitate extreme interpola-

tion between sparse bathymetric measurements for the DEM

to retain the high spatial resolution of topographic LIDAR. This

extreme interpolation adds additional uncertainty into the

DEM, especially in areas of large terrain slope and curvature.

The DEM spatial resolution, and subsequently the number of

measurements per DEM grid cell and the subcell terrain

variance, also affect the magnitude of the cell-level vertical

uncertainty.

Methods to address the current lack of research on

developing coastal DEMs with accompanying uncertainty

surfaces that estimate potential DEM vertical errors at the
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individual cell-level are provided in this manuscript. DEM

uncertainty affects the fidelity of coastal process modeling,

such as tsunami propagation and coastal inundation. Incorpo-

rating the estimated uncertainty by deriving numerous

plausible DEM realizations within the uncertainty bounds

can produce an ensemble of plausible coastal process modeling

results, and in turn, better-informed coastal management

decisions. Estimating the spatially varying DEM uncertainty

also aids in prioritizing future elevation data collection, which

will subsequently also improve the fidelity of coastal process

modeling.
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