Translator Disclaimer
20 May 2020 Sediment Bypassing Pathways between Tidal Inlets and Adjacent Beaches
Author Affiliations +
Abstract

Beck, T.M.; Wang, P.; Li, H., and Wu, W., 2020. Sediment bypassing pathways between tidal inlets and adjacent beaches. Journal of Coastal Research, 36(5), 897–914. Coconut Creek (Florida), ISSN 0749-0208.

This study investigated the sediment transport pathways in three sandy barrier, tidal inlet systems through sediment tracking within a numerical model that simulates hydrodynamics and morphodynamics. The three tidal inlet systems, Coos Bay, Oregon, Shark River Inlet, New Jersey, and John's Pass, Florida, represented high-, medium-, and low-wave energy regimes for U.S. inlets (Pacific, Atlantic, and Gulf of Mexico Coasts, respectively). Three methods employed to define sediment pathways from the results of a numerical morphology model were evaluated: (1) morphodynamic interpretation, (2) mean transport vectors across the modeled inlet, and (3) sediment tracer migration. The sediment tracing methodology employed in this study allowed for an evaluation of the sediment transport pathways between the various morphologic features of a tidal inlet, as well as their respective processes that drive the exchange of sediments. Characterizing and correlating the dominant and subdominant, or seasonal, sediment pathways between tidal inlet morphologic features (sediment reservoirs) can improve long-term models of an inlet sediment system. Divergences in pathways to subfeature shoals of a complex tidal inlet shoal, such as the updrift and downdrift shoals of an ebb-tidal delta, can be resolved through tracking sediment migration. The results of this study illustrate the value of including sediment-tracking techniques in simulating sediment bypassing and the potential of this application to inform coastal engineering and design modifications to the sediment reservoirs of tidal inlet systems.

©Coastal Education and Research Foundation, Inc. 2020
Tanya M. Beck, Ping Wang, Honghai Li, and Weiming Wu "Sediment Bypassing Pathways between Tidal Inlets and Adjacent Beaches," Journal of Coastal Research 36(5), 897-914, (20 May 2020). https://doi.org/10.2112/JCOASTRES-D-19-00141.1
Received: 15 September 2019; Accepted: 11 February 2020; Published: 20 May 2020
JOURNAL ARTICLE
18 PAGES


SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top