BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
1 May 2018 Combined Approach of Empirical Mode Decomposition and Artifical Neural Network for Sea-level Record Analysis
Sooyoul Kim, Han Soo Lee
Author Affiliations +
Abstract

Kim, S. and Lee, H.S., 2018. Combined approach of empirical mode decomposition and artificial neural network for sea-level record analysis. In: Shim, J.-S.; Chun, I., and Lim, H.S. (eds.), Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea). Journal of Coastal Research, Special Issue No. 85, pp. 1091–1095. Coconut Creek (Florida), ISSN 0749-0208.

In this study, we illustrate artificial signal tests analysis implying sea-level records analysis (Visser, Dangendorf and Petersen, 2015) with improved empirical model decomposition (EMD) and artificial neural network (ANN) for predicting the non-linear process of sea-level in terms of predicting a non-linear intrinsic mode for missed data and a non-linear trend. The EMD is intuitive, direct, and adaptive method for decomposing a signal into intrinsic modes, and does not require any predetermined parametric functions for analyzing a non-linear and non-stationary data. The ANN is one of machine learning methods to estimate stationary or non-stationary patterns/values. In our analyses, an artificial signal and sea-levels are decomposed into intrinsic modes, and then mainly low frequency modes are tested with ANN for predicting missing parts and for estimating future variabilities. Our results show that the combination of improved EMD and ANN is highly capable of predicting non-linear processes of sea-levels and can be applicable not only for predicting a missing data but also for estimating long-term natural variabilities and a trend.

©Coastal Education and Research Foundation, Inc. 2018
Sooyoul Kim and Han Soo Lee "Combined Approach of Empirical Mode Decomposition and Artifical Neural Network for Sea-level Record Analysis," Journal of Coastal Research 85(sp1), 1091-1095, (1 May 2018). https://doi.org/10.2112/SI85-219.1
Received: 30 November 2017; Accepted: 10 February 2018; Published: 1 May 2018
KEYWORDS
machine learning method
non-linearity
Sea-level analysis
trend
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top