How to translate text using browser tools
26 May 2020 Laboratory Study on Solute Transport Affected by Rigid Vegetation
Sha Lou, Hongzhe Liu, Ming Chen, Shuguang Liu, Guihui Zhong
Author Affiliations +
Abstract

Lou, S.; Liu, H.Z.; Chen, M.; Liu, S.G., and Zhong, G.H., 2020. Laboratory study on solute transport affected by rigid vegetation. In: Malvárez, G. and Navas, F. (eds.), Global Coastal Issues of 2020. Journal of Coastal Research, Special Issue No. 95, pp. 77-82. Coconut Creek (Florida), ISSN 0749-0208.

Aquatic vegetation is ubiquitous in riverine and estuary environment. With the presence of vegetation, velocity and solute transport can be greatly impacted. In this paper, laboratory experiments were carried out to analyze the influence of rigid vegetation on flow velocity and solute transport. Results have shown that the mean velocity is significantly reduced by vegetation and the maximum values of solute concentration decrease more rapidly with lower relative water depth (ratio of vegetation height to water depth). The longitudinal diffusion coefficients are found to be related with Reynolds number positively and vegetation density negatively. A modified function is proposed in this paper to effectively estimate the longitudinal diffusion coefficients, which can be used under both emergent and submerged vegetation conditions.

©Coastal Education and Research Foundation, Inc. 2020
Sha Lou, Hongzhe Liu, Ming Chen, Shuguang Liu, and Guihui Zhong "Laboratory Study on Solute Transport Affected by Rigid Vegetation," Journal of Coastal Research 95(sp1), 77-82, (26 May 2020). https://doi.org/10.2112/SI95-015.1
Received: 31 March 2019; Accepted: 13 February 2020; Published: 26 May 2020
KEYWORDS
longitudinal diffusion coefficient
solute transport
Vegetated flow
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top