An understanding of the mechanisms of insecticide resistance in the bed bug, Cimex lectularius L., has the potential to lead to new approaches for the control of resistant populations. We used the cytochrome P450 monooxygenase (P450) inhibitor piperonyl butoxide (PBO) to assess the role of P450s in deltamethrin resistance in three field-collected bed bug strains, LA-1, CIN-1 and WOR-1. In addition, we exposed two highly resistant strains, CIN-1 and WOR-1 (resistance ratio [RR] >2,500-fold), to dry residues of piperonyl butoxide-synergized pyrethroid formulations to determine the utility of synergism by PBO. Piperonyl butoxide synergized deltamethrin in all three strains, but its impact was variable. The synergistic ratio varied from 40 in CIN-1 to 176 in WOR-1. Because the resistance ratio for each strain after piperonyl butoxide treatment was 174 and 39, respectively, our results suggest that P450s have some involvement in deltamethrin resistance, but other resistance mechanisms must be involved as well. No significant synergistic effect of formulated deltamethrin was observed with the addition of synergized Pyrethrins or formulated piperonyl butoxide in the CIN-1 strain, but synergism occurred in the WOR-1 strain. Addition of PBO to pyrethroids is not a comprehensive solution to pyrethroid resistance because strains vary in both overall resistance level and the proportion of that resistance attributable to P450s.
How to translate text using browser tools
1 December 2009
Evaluation of Piperonyl Butoxide as a Deltamethrin Synergist for Pyrethroid-Resistant Bed Bugs
Alvaro Romero,
Michael F. Potter,
Kenneth F. Haynes
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Economic Entomology
Vol. 102 • No. 6
December 2009
Vol. 102 • No. 6
December 2009
Cimex lectularius
insecticide synergism
P450
piperonyl butoxide
pyrethroid resistance