The development of insecticide resistance in Asian citrus psyllid, Diaphorina citri Kuwayama, populations is a serious threat to the citrus industry. As a contribution to a resistance management strategy, we developed a glass vial technique to monitor field populations of Asian citrus psyllid for insecticide resistance. Diagnostic concentrations needed to separate susceptible genotypes from resistant individuals were determined for cypermethrin (0.5 µg per vial), malathion (1.0 µg per vial), diazinon (1.0 µg per vial), carbaryl (1.0 µg per vial), carbofuran (0.1 µg per vial), methomyl (1.0 µg per vial), propoxur (1.0 µg per vial), endosulfan (1.0 µg per vial), imidacloprid (0.5 µg per vial), acetamiprid (5.0 µg per vial), chlorfenapyr (2.5 µg per vial), and fenpyroximate (2.5 µg per vial). In 2014, resistance to two carbamate insecticides (carbaryl and carbofuran), one organophosphate (malathion), one pyrethroid (cypermethrin), and one pyrazole (fenpyroximate) was detected in field populations of Asian citrus psyllid in Immokalee, FL. There was no resistance detected to diazinon, methomyl, propoxur, endosulfan, imidacloprid, and chlorfenapyr. The levels of insecticide resistance were variable and unstable, suggesting that resistance could be successfully managed. The results validate the use of the glass vial bioassay to monitor for resistance in Asian citrus psyllid populations and provide the basis for the development of a resistance management strategy designed to extend the efficacy of all classes of insecticides used for control of the Asian citrus psyllid.