How to translate text using browser tools
17 February 2018 Seasonal Effects and the Impact of In-Hive Pesticide Treatments on Parasite, Pathogens, and Health of Honey Bees
Brenna E. Traver, Haley K. Feazel-Orr, Katelyn M. Catalfamo, Carlyle C. Brewster, Richard D. Fell
Author Affiliations +
Abstract

Honey bee, Apis mellifera (L.; Hymenoptera: Apidae), populations are in decline and their losses pose a serious threat for crop pollination and food production.The specific causes of these losses are believed to be multifactorial. Pesticides, parasites and pathogens, and nutritional deficiencies have been implicated in the losses due to their ability to exert energetic stress on bees. While our understanding of the role of these factors in honey bee colony losses has improved, there is still a lack of knowledge of how they impact the immune system of the honey bee. In this study, honey bee colonies were exposed to Fumagilin-B, Apistan (tau-fluvalinate), and chlorothalonil at field realistic levels. No significant effects of the antibiotic and two pesticides were observed on the levels of varroa mite, Nosema ceranae (Fries; Microsporidia: Nosematidae), black queen cell virus, deformed wing virus, or immunity as measured by phenoloxidase and glucose oxidase activity. Any effects on the parasites, pathogens, and immunity we observed appear to be due mainly to seasonal changes within the honey bee colonies.The results suggest that Fumagilin-B, Apistan, and chlorothalonil do not significantly impact the health of honey bee colonies, based on the factors analyzed and the concentration of chemicals tested.

© The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Brenna E. Traver, Haley K. Feazel-Orr, Katelyn M. Catalfamo, Carlyle C. Brewster, and Richard D. Fell "Seasonal Effects and the Impact of In-Hive Pesticide Treatments on Parasite, Pathogens, and Health of Honey Bees," Journal of Economic Entomology 111(2), 517-527, (17 February 2018). https://doi.org/10.1093/jee/toy026
Received: 3 November 2017; Accepted: 12 January 2018; Published: 17 February 2018
JOURNAL ARTICLE
11 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
honey bee
immunity
pathogens
pesticides
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top