Translator Disclaimer
1 June 2000 Comparison of Pheromone Application Rates, Point Source Densities, and Dispensing Methods for Mating Disruption of Tufted Apple Bud Moth (Lepidoptera: Tortricidae)
Author Affiliations +
Abstract

Small-plot (≈0.1 ha) studies were used to evaluate different pheromone dispensing systems, application rates, and point-source densities for mating disruption of the tufted apple bud moth, Platynota idaeusalis (Walker). Using polyvinyl chloride spirals impregnated with tufted apple bud moth pheromone (1:1 ratio of E11-tetradecenyl alcohol/E11-tetradecenyl acetate), pheromone rates of ≥1,482 spirals per hectare (74.1 g pheromone per hectare) were superior to a rate of 988 spirals per hectare (49.4 g pheromone per hectare) in decreasing male response to pheromone traps in 1995, whereas no differences were detected among rates of 988, 1,482 and 1,975 spirals per hectare in 1996. Within a range of 370–988 pheromone dispensers per hectare, point source densities were equally effective in suppressing male response to pheromone traps. Pheromone-impregnated paraffin disks were equally effective at inhibiting male response to pheromone traps compared with polyvinyl chloride spirals. However, a paraffin emulsion formulation of pheromone applied with a hand-held grease gun provided longer residual communication disruption effects than polyvinyl chloride spirals. Dilution of paraffin emulsion pheromone formulations in water for application with a backpack sprayer and airblast sprayer rendered them ineffective in reducing male response to pheromone traps. The releases of pheromone from polyvinyl chloride spirals and paraffin disks aged in the field were described by a linear and negative logarithmic curve, respectively, indicating that dispenser life time should be longer for spirals. The ratio of acetate to alcohol components of pheromone released from spirals increased over time, whereas the release ratio remained more constant for paraffin disks. This suggests that the disruption efficacy of spirals may be prematurely reduced because of imbalance of the released components.

Heike E. Meissner, Cynthia A. Atterholt, James F. Walgenbach, and George G. Kennedy "Comparison of Pheromone Application Rates, Point Source Densities, and Dispensing Methods for Mating Disruption of Tufted Apple Bud Moth (Lepidoptera: Tortricidae)," Journal of Economic Entomology 93(3), 820-827, (1 June 2000). https://doi.org/10.1603/0022-0493-93.3.820
Received: 28 October 1999; Accepted: 1 March 2000; Published: 1 June 2000
JOURNAL ARTICLE
8 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top